CVI42®

Version 5.13 User Manual

cvi42

User Manual

December 2021

Regulatory Information

Manufactured by:

Circle Cardiovascular Imaging Inc. 1100, 800 5th Avenue SW Calgary, Alberta, Canada, T2P 3T6

Telephone: 1 (403) 338-1870

Fax: 1 (403) 338 1895

Website: http://www.circlecvi.com

Canada

cvi42: Health Canada device license number: 93385

United States of America

The following 510K clearances applicable for this product: K082628, K111373, K141480

European Union

cvi42 is qualified as a class IIa medical device. It complies with the requirements of the European Medical Device Directive 93/42/EEC

UDI: 00882916000011

EU Authorized Representative Philipp Barckow Dipl. MedInf.Ravenweg 9 14163 Berlin Germany

European Office

Circle Cardiovascular Imaging B.V. **Phone:** + 31 (800) 265 8982

© Copyright 2021 Circle Cardiovascular Imaging Inc.

cvi42 is a registered trademark of Circle International Corporation in Canada and/or other countries. The information contained herein is subject to change without notice. The only warranties for Circle products and services are setforth in the express warranty statements accompanying such products and services. Nothing herein should be constructed asconstituting an additional warranty. Circle shall not be liable for technical or editorial errors or omissions contained herein.

Table of Contents

1	Regulatory	5
2	Measurement Accuracy	7
3	Basic Components and Indication for Use	8
4	Customization	
5	Viewing	
6	Contour Drawing, Labeling and Measurement Tools	
7	Workspaces	
8	Patient Data Module	
9	Report Module	20
10	Series Overview	25
11	Study Viewer Module	27
12	Multiplanar Reformatting	29
13	4D Viewer	
14	Flow 2D	
15	LV/RV Function Modules	
16	Tissue Signal Intensity	55
17	Tissue T2* Mapping	
18	Tissue T2 Mapping	61
19	Tissue T1 Mapping	63
20	Perfusion Semi-quantitative	71
21	Perfusion Quantitative	75
22	Vascular Module	80
23	Strain	85
24	Flow 4D	
25	Coronary Module	
26	Calcium Scoring	
27	Aortic Valve Module	
28	Femoral Module	
29	Mitral Valve Module	
30	Trans-Septal Module	
31	Technical Support	

1 Regulatory

1.1 Regulatory Information

AGENCY	Authorized Representative / Sponsor / Local Agent	Approval/ Clearance Reference
Australia TGA ARTG	KD&A Pty Ltd 286 Flinders Street Adelaide SA 5000, Australia	177785
Brazil ANVISA	Edifício Times Square Av. Presidente Vargas, 2121 11º andar - sala 1103 Jardim América – Ribeirão Preto - SP ZIP: 14020-260 - Brazil	81118639002
China CFDA	Shanghai (Viacert) Product Technology Service Ltd. Shanghai Chong Ming County Pu Zhen Zhen Pu Zhen Nan Lu 300-4-101, Shanghai, China	NIMR 20172705228
Japan MHLW	ENTORRES 2F 1-82 3 Edobashi	BG30200090
	Tsu City. Mie Japan	227ADBZX00153000 227ADBZX00157000
South Korea KFDA	DANY Trading Co Ltd B120 Penterium 282 Hakui- ro,Anyang-si, Gyeonggi-do Dongan-gu 431-810, Korea	KCL-BBAA-8279
Singapore HSA	Pharmeng Technology PTE. LTD. 1 Fusionpolis Place, Galaxis, #03-20, Singapore 138522	DE0019287
Taiwan FDA	Yi-An International Ltd, 11F-5 N0. 91 Hua-Yin Street, Datong District, Taipei, Taiwan, 10351	DHA05603258904/MF010798
Malaysia MDA	Biod Medica SDN. BHD. N-12-16, First Subang Mall Jalan SS15/4G Subang Jaya, 47500 Selangor Darul Eshan, Malaysia	GB7605919-32314
Argentina ANMAT	Medes Argentina Gorriti 6046, OFF 202 Buenos Aires, C141BKN, AR	256-36
Thailand FDA	Tilleke & Gibbins, Supalai Grand Tower, 26th Floor, 1011 Rama 3 Road, Chongnonsi, Yannawa, Bangkok 10120, Thailand	CAN 6304061
United Arab Emirates MOHAP	Lifetastic FZ LLC Dubai Science Park PO Box 75344 Dubai-UAE	DRCLAS-2019-002545

User	Ma	nι	Jal
Vers	ion	5.	13

Saudi Arabia SFDA	Hatem I Alshedwy Commercial Est P.O.Box # 4596 Makkah 21955 – KSA	GHTF-2020-1711
Colombia INVIMA	Medes Argentina Gorriti 6046, OFF 202 Buenos Aires, C141BKN, AR	INVIMA 2020DM-0022618

2 Measurement Accuracy

2.1 Measurement Accuracy

All the measurements in the software application are direct transfer of the original DICOM data acquired as a result of image acquisition process. The expected error for the on-screen measurements will be limited to sub pixel matrix size, which divides up each pixel of the input image into a set of sub pixels, i.e.

Original Pixel

4 x 4 sub pixel matrix

Depending on the original pixel dimensions and the number of sub pixels used, the accuracy of our measurements will be limited to each sub pixel dimension.

For example, given an original CT or MR image with an isotropic pixel dimension of 0.4 mm and a sub pixel matrix size of 4 x 4, the length (min/max/average diameter) accuracy will be limited to ± 0.05 mm. The accuracy for area and volume will be dependent on the size and complexity of shape, in addition to the sub pixel matrix size. For example, a 4-pixel diameter circle with isotropic pixel dimension of 0.4 mm and 1 x 1 sub pixel matrix will have an accuracy of ± 0.96 mm2.

3.1 Intended Use

cvi42 is intended to be used for viewing, post-processing and quantitative evaluation of cardiovascular magnetic resonance (MR) images and cardiovascular computed tomography (CT) images in a Digital Imaging and Communications in Medicine (DICOM) Standard format.

It enables:

- Importing cardiac MR & CT Images in DICOM format.
- Supporting clinical diagnostics by qualitative analysis of cardiac MR & CT images using display functionality such aspanning, windowing, zooming, navigation through series/slices and phases, 3D reconstruction of images including multiplanar reconstructions of the images.
- Supporting clinical diagnostics by quantitative measurement of the heart and adjacent vessels in cardiac MR & CTimages*, specifically signal intensity, distance, area, volume and mass.
- Supporting clinical diagnostics by using area and volume measurements for measuring LV function and derived parameters cardiac output and cardiac index in long axis and short axis cardiac MR & CT images.
- Flow quantifications based on velocity encoded cardiac MR images including 4D flow analysis
- Tissue characterization of cardiac MR Images**
- Perfusion analysis of cardiac MR Images**
- Strain analysis of cardiac MR images **
- Supporting clinical diagnostics of cardiac CT images including quantitative measurements of calcified plaques in the coronary arteries (calcium scoring), specifically Agatston and volume and mass calcium scores, evaluation of heartstructures including coronaries, femoral, aortic and mitral values.
- Evaluating CT and MR images of blood vessels. Combining digital image processing and visualization tools such as multiplanar reconstruction (MPR), thin/thick maximum intensity projection (MIP), inverted MIP thin/thick, volume rendering technique (VRT), curved planner reformation (CPR), processing tools such as bone removal (based on both single energy and dual energy) table removal and evaluation tools (vessel centerline calculation, lumen calculation, stenosis calculation) and reporting tools (lesion location, lesion characteristics) and key images). The software package is designed to support the physician in conforming the presence or absence of physician identified lesion in blood vessels and evaluation, documentation and follow up of any such lesions.

cvi42 shall be used by qualified medical professionals, experienced in examining and evaluating cardiovascular MR or CT images, for the purpose of obtaining diagnostic information as part of a comprehensive diagnostic decision-making process. **cvi42** is a software application that can be used as a stand-alone product or in a networked environment.

The target population for **cvi42** is not restricted, however the image acquisition by a cardiac magnetic resonance scanner may limit the use of the software for certain sectors of the general public.

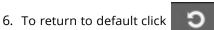
cvi42 shall not be used to view or analyze images of any part of the body except the cardiac images acquired from a cardiovascular magnetic resonance or computed tomography scanner.

WARNING: The Tissue Characterization, Strain and Perfusion modules are not available for clinical use in the USA. The FDA does not approve the use of contrast agents for cardiac MR procedures.

WARNING: Quantitative analysis is dependent on the quality and correctness of the image source data.

WARNING machine.

WARNING: Software may slow down when other software applications are being run on the same machine.


4 Customization

- 4.1 Customize Tools and Working Modules
- 4.2 Configuring Client Language
- 4.3 Configuring Smart Series Handling

4.1Customize Tools and Working Modules

- 1. In the protocol list, select the module you would like to customize
- 2. Click on the wrench (bottom left)
- 3. Everything highlighted in green can be turned on or off. Click the small circular *off* button in the right lower corner of the frame. They will be hidden in all your protocols
- 4. De-activated functionality is highlighted by a purple frame
- 5. To reactivate click on the X

7. Save your selection by clicking the wrench again

4.2 Configuring Client Language

From a specified list, each user can select their preferred language for the **cvi42** client user interface.

To configure the language the user interface:

- 1. Click Preferences -> Appearance.
- 2. Select the Language Selection dropdown list and select the desired language.
- 3. Click OK to save the language preference.
- 4. A warning message will be displayed, indicating that the cvi42 client must be restart in order for the language settings to applied.Click OK.

IMPORTANT: To apply the language settings the cvi**42** client must be restarted.

5. Restart the cvi42 client. Once restarted the cvi42 client login screen will be displayed in the user's preferred language.

IMPORTANT: If no language has been configured the cvi42 user interface will be displayed in the OS Regional Language.

4.3 Configuring Smart Series Handling

Each user can enable/disable the Smart Series Handling functionality. Smart Series Handling is used to automate some workflow steps in order to speed up analysis. This feature will identify each series in the selected study, auto-load the appropriate series into the proper module frames, and in some cases, identify and segment contours.

If Auto-loading and auto-contouring is enabled, the auto-classified series will be auto-loaded into the following modules:

- Function | SAX Module
- Function | Biplanar LAX Module
- Function | Radial LAX Module
- Strain
- Tissue: Signal Intensity

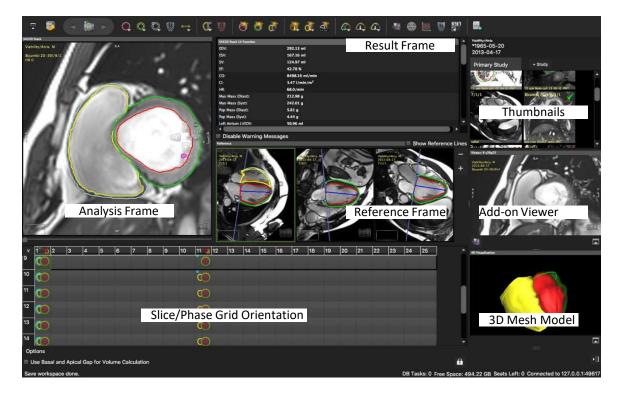
Additionally, the auto-loaded series will be auto-contoured on Function | SAX Module

Smart Series Sorting is used to identify appropriate series that can be loaded into the current Module, and mark suitable series in the Series Thumbnails overview with a green checkmark. Series that are unsuitable are marked with red crosses.

To configure Smart Series Handling:

O Preferences		×
Appearance Viewer Series Overview Reporting Contours	Font MS Shell Dig 2 Change	Î
4D Viewer Strain	Language Selection	
Image Database Anonymization Network	Default - System Language 🔹	
License Server Admin	Startup View	
LDAP Admin Workflow	Start Full Screen	
Housekeeping Server-side Processing	Use Multiple Screens	
Crash Reporting	Smart Series Handling	
	✓ Auto-loading and auto-contouring	
	✓ Enable Smart Series Sorting	
	Start Module	
	Viewer 🔻	
	Patient Data Metric	
-c.		
Reset to Default Set as Default		OK Cancel

- 1. Click Preferences -> Appearance.
- 2. In the Smart Series Handling section there are two options: 1) Auto Load Series in Modules and 2) Enable Smart Series Sorting
- 3. Add checkmarks for the desired feature(s) to be enabled.
- 4. Click OK to save the configuration.

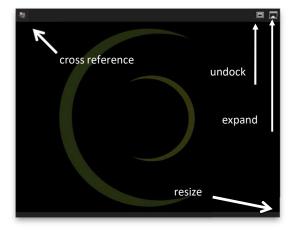

IMPORTANT: By default Auto Load series in Modules is enabled and Smart Series Sorting is disabled.

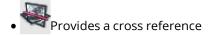
5 Viewing

- 5.1 View Ports Overview
- 5.2 Image Editing, Viewer Controls
- 5.3 Additional Viewing
 - 5.3.1 Floating Viewer

5.1 View Ports - Overview

Each module provides viewer frames for image post-processing. The frames are tagged and prepared for specific image sets (e.g. T2-weighted images)


5.2 Image Editing, Viewer Controls

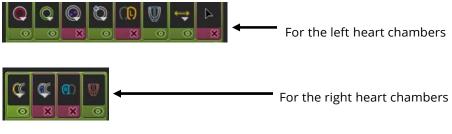

ICON	FUNCTION	MOUSE CLICKS	ALTERNATIVE
	Windowing	Push mouse wheel and drag Auto adjust: double-click MMB Holding shift-key+LMB and drag	Windowing pre-sets: keyboardkeys 1-2-3-0 Windowing pre-sets: context menu Define your own pre-set via <i>Edit</i> in the context menu
<u></u> শেγ	Panning	Hold LMB down and pan	
E L	Zooming	Scroll mouse wheel	Move cursor to the right frame border until symbol appears; LMBdrag up/down Context menu: Image/Auto adjust Zoom
and and a	Cine mode		Spacebar
0	Navigation	Open on-screen navigation buttons	
e e V e	Scroll through phases/slices and series	Hold the shift-key and scroll themouse wheel	Keyboard arrow keys Customize your mouse wheel: Preferences/Viewer/Mouse Wheel function

5.3 Additional Viewer

5.3.1 Floating Viewer

- Located underneath the thumbnail panel, is an additional detachableviewer that can be undocked and changed in size. It will stay on-screen even when switching to a different module.
 - Expand/Collapse Viewer: Select an image via drag-and-drop from the thumbnail panel

6 Contour Drawing, Labeling and Measurement Tools


- 6.1 Manual Contouring
 - 6.1.2 Manual Contour Definition
 - 6.1.3 Using a Selected Drawing Mode (e.g. by setting points)
 - 6.1.4 Semiautomatic Contour Detection
 - 6.1.5 Automatic Contour Detection
 - 6.1.6 Contour Saving and Deleting

- Drawing tools are in the top toolbar or the on-screen pencil box
- Tooltip: All buttons show a brief description on mouse hover

6.1 Manual Contouring

Some tools are hidden by default (as shown below in pink - See Chapter 2) The toolbar is sorted into tool-sets:

Buttons with a small white triangle indicate that there are more options provided:Click and hold the LMB for displaying more options To select, drag the cursor to the desired function and release the mouse button

6.1.2 Manual Contour Definition

- 1. Select a tool with a LMB click
- 2. To draw, click and hold the left mouse button
- 3. To switch to another tool, simply click on the new tool
- 4. To drop the tool, double click LMB anywhere within the frame or click ESC
- 5. The mouse cursor will display the tool that is active

6.1.3 Using a Selected Drawing Mode (e.g. by setting points)

2. Open the pop-up menu and select the drawing mode:

Click-Draw-Contour: sets a series of points for edge definition

Threshold segmentation: allows to define borders by dragging with the LMB downwards and sideways until you have found the threshold that best defines your border

Nudge Contour: allows to drag part of the contour in a defined direction

Push Contour: Shape the contour by pushing the circle

- 3. Switch back to the freehand mode
- 4. The selected drawing mode is displayed on the lower right corner of the frame

6.1.4 Semiautomatic Contour Detection

- 1. Target your area of analysis (LV or RV) by centering the small yellow circle (target point) in the respective chamber cavity. Therefore, drag the image and not the yellow point.
- 2. Click the button once to apply a contour detection
- 3. Click and hold to adjust

6.1.5 Automatic Contour Detection

For automatic contouring based on deep learning please refer to the respective modules.

6.1.6 Contour Saving and Deleting

Contour Saving

• Contours are saved automatically

Contour Deletion

- Delete or backspace key
- Context menu
- Shortcut keys (listed in the context menu)

Note: A warning message will be displayed in the results frame (and the exported reports), if:

- Only one phase has been evaluated
- The number of evaluated slices differ between systole and diastole
- Less than 3 slices are used for calculations

At the readers' discretion, warning messages can be turned off. They will re-appear after contour alteration.

WARNING: Automatic Contour Detection The automatic contour detection provides an initial assumption of contour definitions. It is the responsibility of the user to verify and correct the results.

7 Workspaces

7.1 Workspace Menu

By default, drawn contours are automatically saved and will be reloaded when the patient study is reopened. In addition, the user has the option to:

- Load Workspace DICOM: Loads a workspace that has been previously created as a DICOM Secondary Capture
- Save Workspace DICOM: Saves the current workspace as a DICOM Secondary Capture and appends it as an image to the series
- Reset Workspace: Deletes all drawn contours in the current patient study, and clears all frames

8 Patient Data Module

WARNING: Patient Data

The displayed study/patient data is initially derived from the DICOM information if available. Note that editing these values affect the calculations of all modules. It is the responsibility of the user to verify the data before releasing final results.

Note: To change from metric to imperial units go to Preferences>Appearance>Patient Data Metric

8.1 Edit Patient Data

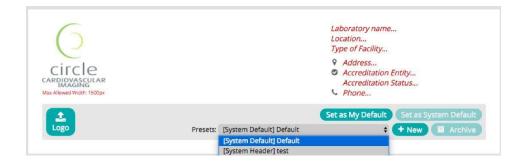
- 1. Edit patient related data necessary for calculation, documentation and reporting
- 2. Enter patient related comments
- 3. Create a *Case Review Presentation*: Select your image for review via context menu, Add Current Series to Case Review or $\Re R$.
- 4. Present Your Case Review: Go to Overview and select Case Review in the Filter

Note: The software retrieves the heart rate from the first image of a series. A heart rate over 250 bpm will not be displayed. Thevalue remains at 250 bpm.

9 Report Module

- 9.1 Customize Logo and Header
- 9.2 Create a Report
- 9.3 Update the Report
- 9.4 Configure Export Options
- 9.5 Show/Hide Report Fields
- 9.6 Delete Report

9.1 Customize Logo and Header



To create the first header, simply type your address and upload a logo. This header will be set for all reports. To support multiple headers, or to select a banner logo, Click on "+New".

- Select system (admin only) or User specific header.
- Enter a "Preset Name" for the header.
- Select Logo or Custom header (i.e. for a banner style header).
- Check "Set as My Default" to set as a default.
- Save.

INSTITUTE LOGO		Laboratory name Location Type of Facility Address Accreditation Entity Accreditation Status
Max Allowed Width: 1500px	System Default \$ Preset Name	Phone Set as My Default O Logo Custom Header
Logo		🖹 Save 🛍 Cancel

The saved header will now be available for reports. Preset headers can be selected using the first drop down "Presets".

Only users with the system admin role can add system headers.Users with reporting permissions can create their own headers. User specific headers cannot be shared with other users.

A user can select that their own header is used as a default over the system default.

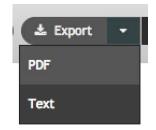
9.2 Create a Report

• Add to report will transfer analyses and measurements to the report module

• <u>Edit Mode</u> <u>A</u> Print Preview The report will open in *edit mode* initially, *print preview* mode can be toggled on/off but editing is not possible in this mode.

• If gender and birthdate are present, normal values will be classified

ort				
- 🕹 Export - Ssen	d to PACS	🖋 Edit Mode 🖶 Print Preview	Scroll To	
Г				
	[•] GLOBA	L LV ASSESSMENT		
	NAME	VALUE	VALUE / HEIGHT	VALUE / BSA
	LVEDV:	140 ml	93.33 ml/m	56 ml/m2
	LVESV	71 ml[16 - 64] 🌔	47.09 ml/m[11 - 39] 🕕	28.26 ml/m ²
	LV5V:	69 ml	46.24 ml/m	27.74 ml/m2 [35 - 67] 🌗
	LVEF:	50 %[57 - 81] 🅕		
	LVCO:	4.5 l/min		
	LVCI:	1.8 l/min/m2 [>= 2.50] 🌗		
	LV MASS:	148 g[54 - 130] 🅕	98.86 g/m[35 - 74] 🅕	59.31 g/m2
	HEART RATE:	64.28		
	LVESWS:	103N/m2		
	GLOBAL PEAK WA	LL THICKNESS: 19.12 mm		
	METHOD:	SAX3D Stack 💠		
			Drag Image Here	
			orog mage nere -	


Images collected during the analysis are available in the Image tab and may be added by drag-and-drop into designated "—Drag Image Here—"areas.

× GLOBA	L LV ASSESSMENT			Images
NAME	VALUE	VALUE / HEIGHT	VALUE / BSA	
LVEDV:	140 ml	93.33 ml/m	56 ml/m2	· ·
LVESV	71 ml[16 - 64] ()	47.09 ml/m[11 - 39] ()	28.26 ml/m2	10000
LVSV:	69 ml	46.24 ml/m	27.74 ml/m2 [35 - 67]	0
LVEF:	50 %[57 - 81] 🕕			
LVCO:	4.5 l/min			
LVCI:	1.8 l/min/m2 [>= 2.50] ()			
LV MASS:	148 g[54 - 130] 🅕	98.86 g/m[35 - 74] 🅕	59.31 g/m2	
HEART RATE:	64.28			
LVESWS:	103N/m2			
GLOBAL PEAK W/	ALL THICKNESS: 19.12 mm			Comme <mark>nt</mark>
METHOD:	SAX3D Stack 💠			
≡		- Drag Image Here		112.1
	L RV ASSESSMENT			2.9 20.6 17.4
NAME	VALUE	VALUE / HEIGHT	VALUE / BSA	2.9 45.8
NAME RVEDV	VALUE 146 ml	VALUE / HEIGHT 97.35 ml/m	58.41 ml/m ²	2.9 45.8 36.1
NAME RVEDV RVESV	VALUE		58.41 ml/m ² 31.08 ml/m ²	2.9 45.8 36.1 Wall Thickening (94.1 mm (AHA)
NAME RVEDV	VALUE 146 ml	97.35 ml/m	58.41 ml/m ²	2.9 45.8 36.1 Wall Thickening (94.1 mm (AHA)
NAME RVEDV RVESV	VALUE 146 ml 78 ml	97.35 ml/m 51.8 ml/m	58.41 ml/m ² 31.08 ml/m ²	2.9 45.8 36.1 Wall Thickening (94.1 mm (AHA)
NAME RVEDV RVESV RVSV	VALUE 146 ml 78 ml 68 ml	97.35 ml/m 51.8 ml/m	58.41 ml/m ² 31.08 ml/m ²	2.9 45 36 Wall Thickening 94.1 mm (AHA)

- *Add Images*: Additional images (e.g. polar maps), can be exported to the desktop and imported into the image pane via the *Add Images* at the bottom of the image pane
- Image captions can be edited from within the image pane, or inline in the report, by clicking on the text directly below theimage
- Deleting an image from the report section will return the image to the Image pane
- 1. Review the report, add findings and write the summary

2. Generate a final report. Once a report has been finalized, a .pdf of this report is stored insettings pane, under History

3. Once the report is done go to *Export* and select the output format. The selected output format will be remembered for future reports

9.3 Update the Report

- Update before finalization, after contour corrections or recalculations: In the module click *Add to Report*. The report should automatically update, it might take a few seconds.
- Update after finalizing the report: Do the same as above and click create addendum.

Note: Any finalized reports or addendums will have a pdf stored under settings pane, *History*.

9.4 Configure Export Options

Click the configuration button (gear icon) to set your Export Preferences:

Export Options			×
Output Format:	PDF Text		
PDF, DICOM			
Paper:	🔵 A4 📀 US Letter		
Tissue Diagram:	 Include If Present Polarmaps 		
Axial Coronary Anatomy:	✓ Include If Present		
Text			
Destination: Screen	File		-
		Save changes	Cancel

9.5 Show/Hide Report Fields

From the drop-down, select what you would like to edit:

• *Exam*: allows to hide sections for the current report (Note that this is the only mode available tonon-administrative users and will be used by default)

• *Protocol:* available to administrators, this mode will save the selection to the current protocol

- 1. Click the eye icon and toggle the field-visibility switch to hide/show report fields. Fields highlighted in red will be hidden from the onscreen and printed/exported reports. Fields highlighted in beige will be visible
- 2. Click the eye icon again to return to report editing mode

Acc #	EMPTY O	Custom Patient ID	Ø	HL7 Patient ID	
Prior Names	EMPTY	Ethnicity	EMPTY O	Insurance Information	EMPTY O
Gender	Female	Blood Pressure	EMPTY / EMPTY ①	Birthdate	22 Mar 1972 (48 yrs)
Heart Rate	75.00	Height (Cm)	150.00	Weight (Kg)	150.00
BMI (kg/m ²)	66.67 🔘	BSA (m ²)	2.50 (Mosteller Formula)	Patient History	EMPTY
Risk Factors	EMPTY	Medications	EMPTY	Allergies	EMPTY
Clinical Situations	EMPTY	Staff	EMPTY O	1	
		Study Date	17 Mar 2020	Study Description	Cardiac MRI
Report Number Referring Physician	16 💽	Study Date	17 Mar 2020	Study Description	Cardiac MRI C
Report Number Referring Physician	16 O EMPTY Show Address	Modality	MR O	Indication Name	¢ C
Report Number	16 EMPTY Show Address	Modality		Indication Name	
Report Number Referring Physician Protocol Name	16 O EMPTY Show Address	Modality	MR O	Indication Name	÷ ••
Report Number Referring Physician	16 O EMPTY Show Address	Modality mage Quality	MR O	Indication Name	÷ ••
Report Number Referring Physician Protocol Name SCANNER	*6 C EMPTY Show Address Valve Dis ♦ C	Model Model Sequences	MR O	Indication Name Study Indications Serial Number	÷ С
Report Number Referring Physician Protocol Name SCANNER Manufacturer	r 6 CEMPTY Show Address Valve Dis C Valve Dis C SIEMENS SIEMENS Syngo MR B15	Modality mage Quality Model Sequences	MR O	Indication Name Study Indications Serial Number	÷ С
Report Number Referring Physician Protocol Name SCANNER Manufacturer Software Platform	16 EMPTY Show Address Valve Dis \$ Valve Dis \$ SIEMENS Syngo MR B15 EMPTY	Modality mage Quality Model Sequences	MR O	Indication Name Study Indications Serial Number	÷ С
Report Number Referring Physician Protocol Name SCANNER Manufacturer Software Platform Field Strength	16 EMPTY Show Address Valve Dis \$ Valve Dis \$ SIEMENS Syngo MR B15 EMPTY	Modality Model Model Sequences	MR O	Indication Name Study Indications Serial Number	÷ С

9.6 Delete Report

To start with a new report, use the delete report option and the software will create a new report.

10 Series Overview

10.1 Series Overview

10.1.1 How to Open a Series in One of the Analysis Module

10.2 Series Composer

Intended use:

- Get a quick, in-depth overview of sequences and images
- Choosing image/ series for evaluation
- Series Composer sub-unit allows for recomposing studies

If Smart Series Sorting is enabled, cvi**42** will identify appropriate series that can be loaded into the current module. Suitable series are marked in the Series Thumbnails overview with green checkmarks. Series that are determined to be unsuitable are marked with red crosses and cannot be loaded into the current module.

10.1 Series Overview

Use PgUp/PgDown to navigate to the next/previous series in slideshow mode

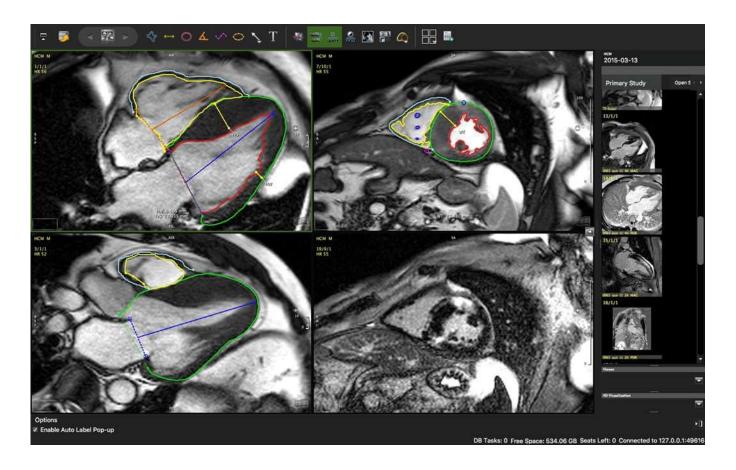
10.1.1 How to Open a Series in One of the Analysis Mode

1. Drag and drop it into one of the modules in the module pane

or

2. Open the context menu with a right mouse button (RMB) click and select the module from here

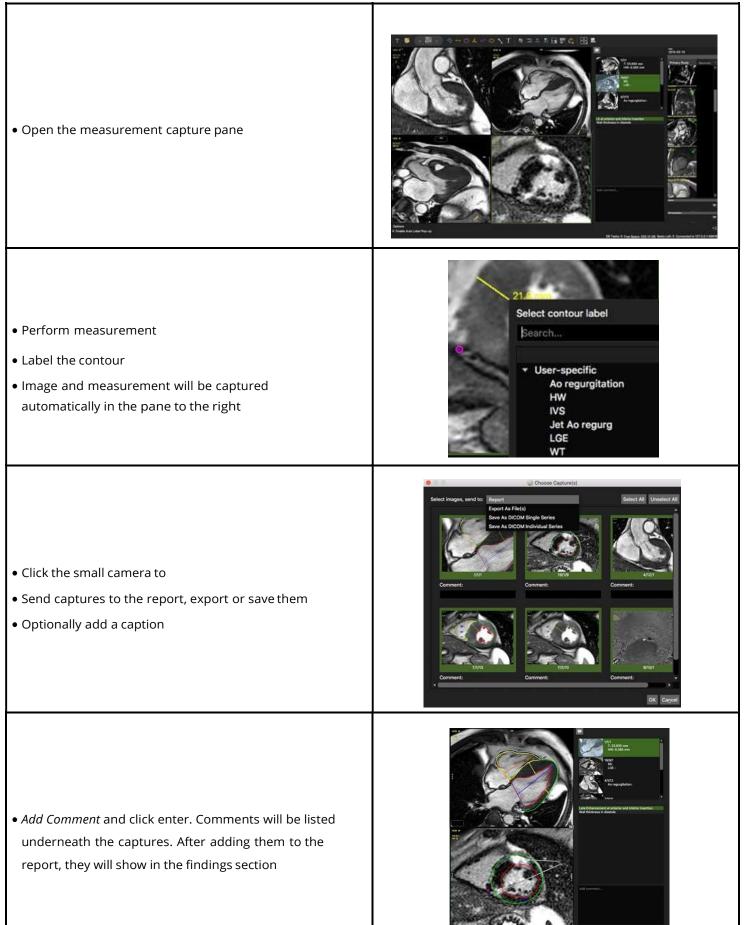
10.2 Series Composer


The Series composer allows to generate new manually composed series.

- 1. Drag a series to the Browser, choose slices or phases and drag them into the composer
- 2. A complete series can be dragged directly to the composer
- 3. For sequence information (e.g. trigger time or slice location) hover over an image
- 4. In the Composer select the phase/slice or series and use the context menu to remove, insert or sort images
- 5. Click *Apply* to assemble the newly composed series and name it. The lower window provides a showcase for newly composed series
- 6. A newly composed series will automatically be appended to the list of series. Manually composed series can beidentified by their tag (e.g. 28 (manual 9/1/1)
- 7. Rename and remove manual series from the study with RMB on the manual series in the thumbnail preview pane.

11 Study Viewer Module

11.1 Custom Measurements



Intended use:

- View and compare multiple sequences next to each other
- Perform and automatically capture measurements
- Add contour labels and annotations
- Add comments/findings that will be pushed to the report Findings section

When using the Study Viewer Module, if "Auto Load Series in Module" is enabled, cvi42 will auto-load an appropriate SAX CINE series into the first viewer frame and appropriate LAX CINE series will be auto-loaded into the subsequent frames.

11.1 Custom Measurements


12 Multiplanar Reformatting

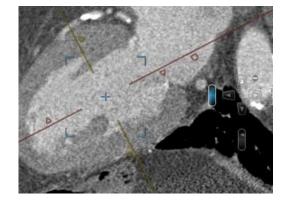
12.1	Double Oblique
	12.1.1 Navigation
	12.1.1.1 Crosshair Navigation
	12.1.1.2 Adjust the Slab-Thickness
	12.1.2 Reporting and Saving of Image Captures and Measurements
	12.1.2.1 How to Use Multi-Frame Screen Capture (top toolbar)
	12.1.2.2 How to Save Measurement Captures
12.2	Navigation Tab

Intended use:

Reconstruct a slice in any position and orientation through the 3D

Volume.The MPR Module provides 2 tabs:

Double Oblique

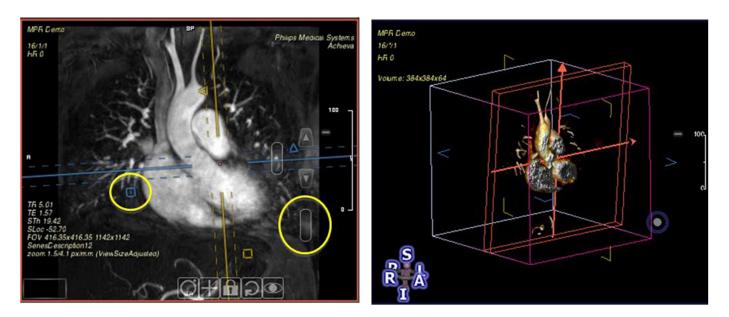

Free Form Navigation

12.1 Double Oblique

12.1.1 Navigation

By default, a mouse drag in the view port slices through the volume. Alternatively,click the arrow keys.

Use the toolbar button to toggle between panning and slice navigation. Alternatively press the Ctrl (command) key to switch to panning.


12.1.1.1 Crosshair Navigation

- Two color-coded orthogonal crosshairs within a viewport correspond to the frame with the samecolor
- Drag the center of the crosshairs to reposition the MPR center. Alternatively, click in a region of interest within theReference Viewer

- Dragging a crosshair on a triangle will rotate around the MPR center, the lines will always stay orthogonal to each other
- Dragging a crosshair close to the center allows to rotate, and close to the end allows to move it in a vertical/horizontal direction.
- This behaviour will be indicated by icons when hovering over the line
- To move the crosshairs individually, open the context menu and select Rotate Individual Plane
- Dragging on a square will adjust the slab thickness

12.1.1.2 Adjust the Slab-Thickness

- A square icon next to the crosshairs allows to change the slab thickness by dragging the square
- Another option to change the slab thickness is the slab-thickness scroll bar (see screenshot): Dragging the scroll bar with
- LMB increases/decreases the slab thickness using the smallest amount of data increment available for the loaded volume

12.1.2 Reporting and Saving of Image Captures and Measurements

12.1.2.1 How to use Multi-Frame Screen Capture (top toolbar)

Add single or multiple images of the current layout to your report.

Multi-Frame Screen Captures (F3) Click the icon in the top tool bar

- 2. To add images click Select All or select single images
- 3. Choose between displaying or hiding Screen Tags
- 4. Optionally enter a comment
- 5. Other options are Export As Files and Save As DICOM
- 6. Finally, click the Add to Report button
- 7. Images will show up in the report

*.png
*.bmp
*.ico
*.jpeg
*.jpg
*.ppm
*.tif
*.tiff
*.xbm
*.xpm

12.1.2.2 How to Save Measurement Captures

Add captures to the report.

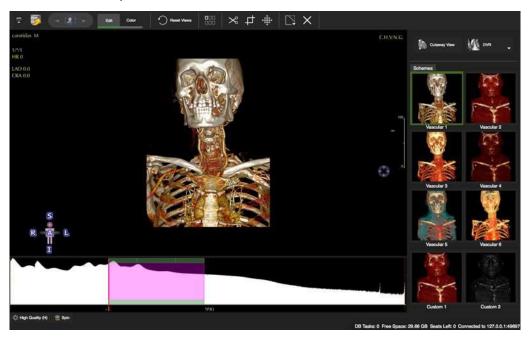
- 1. As soon as you have done a measurement the capture will show up in the panel as Untitled
- 2. Drag a label on the capture

- Click the small camera in the panel to add the capture to the report
- 4. The captures are part of the workspace and can be reviewed by clicking on the capture
- 5. Labels will be "auto" saved alongside with the current workflow protocol per user

12.2 Navigation Tab

- 1. Select the MPR viewer Frame and click the Navigation sub-module button
- 2. Move the MPR center by clicking in your ROI
- 3. Slice Navigation: left mouse drag or by dragging the slice navigation slider
 - Toggle on *Rotate Image* to freely rotate with a mouse drag within the circle
- 5. When in Slice Navigation, you can still freely navigate initiating your mouse drag in the shaded area, of the circle
- 6. Hold the center of rotation during free-form navigation: Click the "+" at around 11 o'clock or use the modifier key "Shift"
- 7. When your mouse wheel is set to Slice Navigation (Preference->Viewer->Mouse Wheel Function) it is

possible to accelerate slice navigation by holding down the Ctrl/CMD key


4.

13 4D Viewer

13.1	Edit
	13.1.1 Measurement Option
	13.1.2 Segmentation
	13.1.2.1 How to Do an Automatic Segmentation
	13.1.2.2 How to Use Clipping and Cropping
13.2	Color

This viewer is designed to analyze 3D and 4D data such as MR and CT (**cvi42** only) angiography. The

4D Viewer module provides 2 sub-modules: Edit and Color

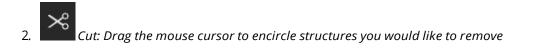
13.1 Edit

- Drag a 3D, 4D or stacked 2D image data set into the viewer frame.
- The right-side panel offers different rendering options as well as a *Cutaway View*, to scroll through a volume in this view press Ctrl+Alt and drag the LMB.

13.1.1 Measurement Option

- *Measurement* is an option that can be found in the context menu.
- It allows to set a marker which will indicate the position within the volume that can be viewed across pages and modules. Marker points are automatically saved to a workspace

13.1.2 Segmentation


13.1.2.1 How to Do an Automatic Segmentation

 Select the <i>Region of Interest</i> Select one of four options 	
ROI-Heart: • The heart will be segmented automatically	
ROI - User defined: • Activate the Cutaway button (former View Clip)	Cutaway View
• Activate the 3D Region Grow Clip	-==-
• Point the cursor in the middle of your ROI and drag	
• When you are done, go to the clipping pane and click Keep	Schemes Clipping Keep (K) Add (F) Delete (D) Delete (D) Continue clicking on the button to expand clipping region.
• Turn off the grow button	
 Optionally, add a background: Context Menu>Rendering>Background 	Volume Ctrl+F1 MIP Ctrl+F2 Fluoro Ctrl+F3 Surface High Quality H Background B Set as Background

ROI-LV: • Repeat steps 1-6	
• No Region of Interest	
• Will display the original volume	

13.1.2.2 How to Use Clipping and Cropping

1. Select the tool from the tool bar and select a drawing mode from the tool pop-up menu (default=freehand)

Crop: Drag the mouse cursor to encircle things you would like to keep

4. Grow: Move the cursor over the region of interest. A black dot will indicate the software has detected a structure that can be segmented. A red square will appear over a structure that has already been segmented. Dragging the cursor downwards will define the region of interest according to the SI threshold. Dragging the cursor sideways will increase the threshold, takingmore SI into account.

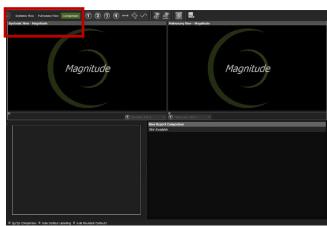
or pan 🐨

the volume while in clipping mode, move the mouse over the icons and drag

13.2 Color

- Ambient Light: simulates surrounding light
- Diffuse Light: light that reflects into all directions
- Specular Light: simulates the light reflection on the surface depending on the vantage point
- Shininess: increases the highlights

Color Schemes: cvi42 provides 6 predefined color schemes (vascular 1-6) and 2 custom schemes


14 Flow | 2D

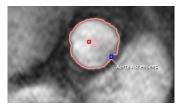
14.1 Flow Quantification
14.1.1 How to Do a Flow Analysis
14.1.2 How to Do a Flow Correction
14.1.3 How to Display Flow Curves

Flow analysis (Only through plane velocity encoding) Intended use:

- Color-coded flow display with semiautomatic contour detection,synchronization and forwarding
- Automatic calculations of flow parameter
- Shunt assessment (Qp/Qs)

The *Flow1/Systemic Flow, Flow2/Pulmonary Flow* and *Comparison* tabs are located at the top of the module

14.1 Flow Quantification

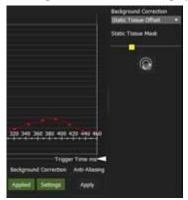

14.1.1 How to Do a Flow Analysis

- 1. **I For color encoding click on the** *Toggle Flow Overlay* button
- 2. To reduce noise, the threshold color overlay can be adjusted

3. Define the vessel border

4. Label the contour

5. **Example** Forward the contour. The automatic contour detection will grow the contour towards the vessel borders based on the information from all phases. It also forwards the contours to all phases



- 6. Scroll through phases to ensure the contours are correct
- 7. Add to Report: Flow assessments of different series have to be

added individually to the report

14.1.2 How to Do a Flow Correction

When clicking on "Apply" in the Background Correction options, a static tissue mask offset correction is automatically applied. The "Settings" are automatically displayed, so that the user can check and edit the correction that has been applied. Click again on "Settings" to hide the settings panel.

Background correction options:

• Offset Correction: Define Static Tissue mask (yellow) with the slider. Manually exclude regions that should not be part of

the statictissue mask, e.g. spatial aliasing, using the "Erase Mask" tool

- Phantom Correction: Drag the phantom image in the box
- Background Correction (BC): Click on BC, draw and forward (use context menu command) a ROI in an area with no flow

Anti-aliasing shall be applied as the last step of the flow analysis (after ROI drawing and correction, and after background corrections).

14.1.3 How to Display Flow Curves

- 1. Use the color-coded checkbox to toggle flow curves on/off
- 2. Invert Results in case of wrong encoding directions

- 3. Shift the curve on the time axis for better viewing
- 4. Adjust the triangles on the bottom of the graph to calculate flow within a set time range (inside ruler)
- 5. Hover over a data point to view the numbers
- 6. A right mouse click in the graph opens a context menu, that offers several display options and an option to export the flowcurves

7. Add to report. Flow assessments of different series have to be added individually to the report

15 LV/RV Function Modules

15.1 Function|Biplanar LAX Module

15.1.1 How to Do Biplanar LV Function and Volume Analysis

15.1.2 How to Do Automated Atrial Volumetry

- 15.2 Function | Radial LAX Module
 15.2.1 How to Do LV Function with Multiple Radial Long Axis
 15.2.2 How to Create a Ventricular Volume/mass Curve
- 15.3 Function | SAX Module
 - 15.3.1 Short 3D Interface

15.3.1.1 Thumbnail Grid

- 15.4 Global LV function and volume analysis
 - 15.4.1 How to Do Fully Automatic LV/RV Segmentation
 - 15.4.2 How to Do a Mitral/tricuspid Valve Plane Correction
 - 15.4.3 How to Do Manual Phase Shifting Per Slice
 - 15.4.4 How to in/exclude Papillary Muscles
 - 15.4.5 How to Create and Display a Volume Curve
 - 15.4.6 How to Do a Regional Wall Motion Analysis
 - 15.4.7 How to Do Atrial Volumetry

15.4.7.1 How to Do Atrial Volumetry in Short/Long Axis Orientation

15.1 Function | Biplanar LAX Module

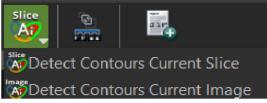
Intended use:

- LV function analysis biplanar in 2CV and 4CV or triplanar by adding a short axis view
- Atrial volumetry in one or 2 planes
- Cardiac valve displacement (MAPSE/TAPSE assessment, longitudinal atrial and ventricular function)

WARNING: Longitudinal atrial and ventricular function are not for clinical use.

WARNING: Bi/Triplanar

For the calculations, the diastolic and systolic phase are assumed to be in the same phase of the cardiac cycle in all three views. The volume calculation is done per phase. The smallest volume is assumed to be the systolic volume and the largest volume is assumed to be the diastolic volume. In case a volume can be calculated for one phase only, ESV and EDV will be displayed as equal and no calculations will be performed for derived parameters such as ejection fraction.


Endocardial contours must always be on the inside of the epicardial contour, does not check for that.

Calculations in **cvi42** are performed based on the current state of contour definition and image selection. For every change the calculations are updated immediately. It is the responsibility of the user to decide whether the stage of contour definitions reflects the intended measurement task.

When using the Function | Biplanar LAX Module, if "Auto Load Series in Module" is enabled, cvi42 will auto-load an appropriate 2CV LAX CINE series into the first viewer frame and appropriate 4CV LAX CINE series into the subsequent frame.

15.1.1 How to do Biplanar LAX Automatic Contour Detection

• There are two AI options. The first one will detect LV, LA and RA contours on all phases of the selected 2CV and 4CV slices, and thesecond one will do the same for the selected image (phase) only.

- Right-mouse clicking on the AI tool will open a dropdown menu with the available AI options.
- Choose an option and activate it with LMB click.
- Check the contours and correct if necessary
- Add the analysis to report

The on-screen report is split into 3 tabs:

- LV Function
- Long Axis Strain
- Atrial Function

LV Function Long Axis Strain Atrial Function

The LV function contains all quantitative LV function data, including MAPSE (2CV, 4CV) and TAPSE (4CV) measurements.

LV Function	
Biplanar LV Function	
not available	
Monoplanar 2CV LV F	unction
EDV:	226.06 ml
ESV:	88.44 ml
SV:	137.62 ml
EF:	60.88 %
CO:	7.43 l/min
CI:	4.03 l/min/m ²
HR:	54.00 / min
Myo Mass (Diast):	299.84 g
Myo Mass (Syst):	329.47 g
Phase LV Diastole:	24
Phase LV Systole:	10
EDV/H:	129.18 ml/m
EDV/BSA:	122.55 ml/m²
ESV/H:	50.54 ml/m
ESV/BSA:	47.94 ml/m²
SV/H:	78.64 ml/m
SV/BSA:	74.61 ml/m²
Myo Mass/H (Diast):	171.34 g/m
Myo Mass/BSA (Diast):	162.55 g/m²
Myo Mass/H (Syst):	188.27 g/m
Myo Mass/BSA (Syst):	178.61 g/m²
MAPSE Inferior:	16.02 mm
MAPSE Anterior:	7.20 mm

The Atrial Function page includes all atrial function data, with the introduction of EF and indexed values

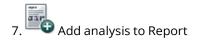
User Manual Version 5.13

Atrial Function	
Biplanar LA Function	
not available	
Monoplanar 2CV LA Functi	ion
Left Atrium Vol at LVED:	92.62 ml (25.08 cm²)
Left Atrium Vol at LVES:	155.97 ml (35.77 cm²)
Phase LV Diastole:	24
Phase LV Systole:	10
Left Atrium Vol at LVED/H:	52.92 ml/m
Left Atrium Vol at LVED/BSA:	50.21 ml/m ²
Left Atrium Vol at LVES/H:	89.13 ml/m
Left Atrium Vol at LVES/BSA:	84.55 ml/m²
Min LA Vol:	92.62 ml (25.084 cm²)
Phase Min LA Vol:	24
Max LA Vol:	159.76 ml (36.260 cm²)
Phase Max LA Vol:	9
Min LA Vol/H:	52.92 ml/m
Min LA Vol/BSA:	50.21 ml/m ²
Max LA Vol/H:	91.29 ml/m
Max LA Vol/BSA:	86.61 ml/m²
LA EF:	42.03 %

The long axis strain tab contains strain related data as summarised below. Note: this is not for clinical use and results are sent only toscientific data.

Long Axis Strain	
The results are to be used i	for research purposes only and not for primary diaphostics and direct patient
Average 2CV and 4CV	
Average LV Long-Axis Strai	in: -18.17 %
Average LV Long-Axis Diffe	
Average LV AV Junction Str	rain: -17.45 %
Average LV AV Junction Dif	ference: -16.57 mm
Average LA Long-Axis Stra	in: 33.14 %
Average LA Long-Axis Diffe	erence: 13.71 mm
Average LA AV Junction Str	rain: 30.90 %
Average LA AV Junction Dif	fference: 13.54 mm
Monoplanar 2CV	
LV Long-Axis Strain:	-18.88 %
LV Long-Axis Difference:	-17.74 mm
LV AV Junction Strain:	-18.80 %
LV AV Junction Difference:	-18.46 mm
LA Long-Axis Strain:	30.78 %
LA Long-Axis Difference:	14.58 mm
LA AV Junction Strain:	28.33 %
LA AV Junction Difference:	14.18 mm
Phase LV Diastole:	30
Phase LV Systole:	13
Monoplanar 4CV	
LV Long-Axis Strain:	-17.46 %
LV Long-Axis Difference:	-15.50 mm
LV AV Junction Strain:	-16.11 %
LV AV Junction Difference:	-14.69 mm
LA Long-Axis Strain:	35.49 %
LA Long-Axis Difference:	12.84 mm
LA AV Junction Strain:	33.47 %
LA AV Junction Difference:	12.90 mm
RA Long-Axis Strain:	47.55 %
RA Long-Axis Difference:	17.64 mm
RA AV Junction Strain:	45.66 %
RA AV Junction Difference:	17.85 mm
Phase LV Diastole:	1
Phase LV Systole:	11

15.1.2 How to Do manual Biplanar LV Function and Volume Analysis


1. Drag and drop the series (2CV, 4CV) from the thumbnail panel into their respective frames and adjust viewer properties

2. Select the end-diastolic phase

3. *LAX LV Extent* contour: Set two points in the mitral valve plane, and a third point in the apex to define the length of the ventricle. As soon as the apex point has been placed, the endocardial contour will be detected automatically. correct if necessary

- 4. Draw an epicardial contour
- 5. Do the same for the end-systolic phase

Segment Myocardial Contours LAX in Slice: Optionally propagate endo- and epicardial contours for a myocardial segmentation in all phases

15.2 Multiple Long LAX Module

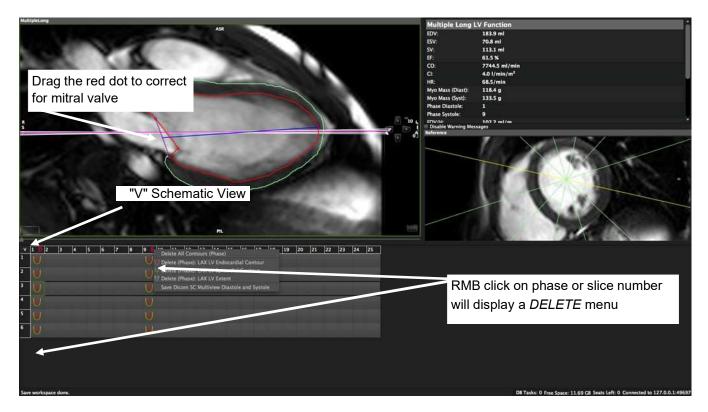
Intended use:

LV function volume and mass analysis.

WARNING: Multiple Long

The input for multiple long calculations requires a multi-slice series with long axis slices that are acquired along a central rotation axis. **cvi42** checks for the presence of these requirements, although it allows some variance to avoid small aberrations being rejected from the analysis. It is the responsibility of the user to verify the cutting line of the slices and decide whether the variance in the rotation axis is acceptable.

Depending on the shape of the left ventricle the method in use might not be suitable for all evaluations (e.g. severe regional wall motion abnormalities), it is the user's responsibility to verify the suitability of the selected method.


Endocardial contours must always be within (i.e. on the luminal side of) the epicardial contour, **cvi42** does not check for that.

The volume calculation is performed for every phase. The smallest volume is assumed to be the systolic volume and the largest volume is assumed to be the diastolic volume. If the volume can only be calculated for one phase, ESV and EDV will be displayed as equal and no further calculations are done.

Missing contours are interpolated, if possible.

Calculations are performed based on the current state of contour definition and image selections. For every change in this state the calculations are updated immediately. It is the responsibility of the user to verify that the contours reflect the desired measurements before releasing final results.

When using the Function | Radial LAX Module, if "Auto Load Series in Module" is enabled, cvi42 will auto-load an appropriate multiple Long LAX CINE series into the first viewer frame and appropriate SAX CINE series into the reference frame.

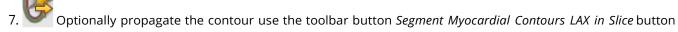
15.2.1 How to Do LV Function with Multiple Radial Long Axis

1. Drag the radial long axis series from the thumbnail panel into the respective frame and adjust viewer

properties. Aperpendicular short axis cine series (if available) will automatically be displayed in the reference

window

2. Clicking on the "V" in the left top corner switches to a schematic view to help you find the right slice and phase


3. Visually select diastole and systole

4

Define the extend of the left ventricle: Set two points defining the mitral valve plane and a third point in the apex to define the length of the ventricle, the endocardial contour will be detected automatically. Correct endocardial contour

- 5. Adjust the valve plane by dragging the red dot
- 6. Draw an epicardial contour W manually or Semiautomatic

8. Repeat for all slices

9. Add analysis to Report

15.2.2 How to Create a Ventricular Volume/mass Curve

1. Define endocardial and epicardial contours in all phases and slices

Peak Ejection and Filling Rate and Peak Wall Thickness can be found in the scientific report (Report Module)

15.3 Short 3D Module

Intended use:

Using the disc-summation technique this module can analyze a stack of parallel images in long, short or axial orientations:

- Global and regional LV function and volume analysis
- Global RV function analysis
- Atrial volumetry

WARNING: SA 3D

The volume calculation is done for phases. The smallest volume is assumed to be in systole and the largest volume is assumed to represent diastole. In case a volume can only be calculated in one phase, ESV and EDV will be displayed as equal and no further calculations are done. Missing contours are interpolated, if possible.

Calculations are performed based on the current state of contour definition and image selections. For every change in this state the calculations are updated immediately. It is the responsibility of the user to verify that the contours reflect the desired measurements before releasing final results.

When using the Function SAX Module, if "Auto Load Series in Module" is enabled, cvi**42** will auto-load an appropriate SAX CINE stack into the first frame, a 4CV LAX CINE series into the first reference frame, a 3CV LAX CINE series into the second reference frame, and a 2CV LAX CINE series into the third reference frame. cvi**42** will also generate contours at the end-diastolic and end-systolic phases (ED/ES) of the CINE series as per the contours preferences.

15.3.1 Short 3D Interface

15.3.1.1 Thumbnail Grid

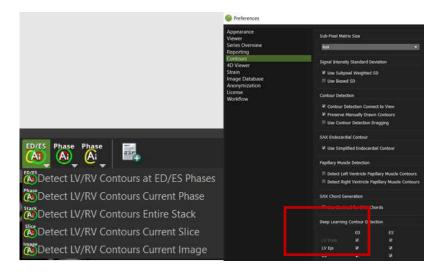
The thumbnail grid represents images of all slices and phases that are contained in a parallel stack. Optionally, the display can be changed to a schematic view click the V.

V	1 Đ	2	3	4	5	6	7	8	9	10 3	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
1		1									K	R	MB (click	on p	ohas	se.									
2													umb		۹ II I	¢	ie.									
	-												unio													
3	0	÷	¢	*	÷														ole (LV		24	-194 -	2 %			
4	ð									*					4				ole (LV)							
	\odot																		ole (R\							
5	Ć	÷	Ф	¢	¢	÷		÷	÷	6	÷	¢	¢	÷					ole (RV						\$	
-		-			2041			4		-		-		4	æ1				I Defin						ф ¹	
6	\odot									0										(Phase						
7	ð									20										X Inferi						
	$\mathbf{\omega}$									0										X LV Er						
8	Ċ	÷	¢	¢	÷	¢	÷	÷	4	Ô	÷	÷	÷	¢	÷					X LV Ep X Left /					¢	
9	4-	-	45	45	25	æ	25	æ	25	die 1	25	-45	25	-	45					X Papill					¢	
9	\odot									00										X RV E						
10	do	¢	÷	÷		click	(on	slice		đ										X RV P				tour 🐖		
-	0						C OII	31100		0						Ø	Delete	e (Phas	se): SA	X Refer	ence l	Point				
11	Ć	÷	¢	∲n	umb	er	÷	÷	÷	Ć	÷	¢	¢	÷	÷	0	Delete	(Phas	se): SA	X Right	Atriur	n Cont	our			
12	ð	÷	÷		÷			÷	4	đ	÷		÷	÷	÷		÷	÷	÷	4	÷		÷	÷	÷	
	\odot									00								Or	otion	to m	anu	allv (defin	e Di	astol	е
13				÷		÷	e (4		÷.												,				
14	2442				ete All C					2042								an	u Sy	vstole	3465					
14								Referenc cardial C																		
00	tions	_	_	O Del	ete (Slice	e): SAX I	LV Epica	ardial Cor	ntour		_	_	_	_	_	-	_	K			_	_	_	_	-	
	Use Bas	al and	d Anic	a 🔍 Del	ete (Slic	e): SAX I	RV Endo	cardial C	ontour										Ma	nual De	finitio	n of D	iastole	and Su	stole	
			- apre	C Del	ete (Slici	e): SAX I	RV Epic	ardial Co	ntour															and o	and a second	
				O Del	ete (Slice	e): SAX	Referen	ce Point																		

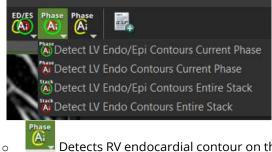
RMB click on phase number:

- 'V' toggles between image and contour view
- Right mouse click on a phase or slice number opens a context menu

15.4 Global LV Function and Volume Analysis


15.4.1 How to Do Fully Automatic LV/RV Segmentation

- There are three main Al icons
- Right-mouse clicking on each of the AI tools will open a dropdown menu with other AI contour detection options.



Detects LV (endocardial and epicardial) and RV (endocardial) contours on the selected image, phase, slice, entire stack, or at end-diastolic and end-systolic phases (ED/ES). The LV and RV contours that are detected with the option ED/EScan be customized in "Preferences>Config>Contours>Deep Learning Contour Detection" (all options are checked by default)

Phase

Detects LV endocardial and epicardial contours on the selected phase or on the entire stack.

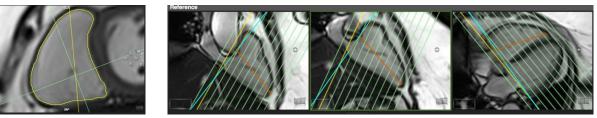
Detects RV endocardial contour on the selected phase or on the entire stack.

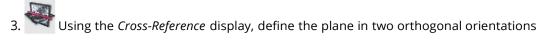
- Whenever the LV epicardial contour is detected with an AI tool, the respective anterior and inferior insertion points of the RV will also be detected. If the detection runs on all slices of a selected phase or on the entire stack, the LV LAX extent will also be detected on the respective phase(s) of each LAX series loaded on the reference frame(s).
- With a single click on the ED/ES tool . the user obtains the onscreen report (EDV, ESV, EF, SV, etc..) and the Wall Thickening/Motion and Thickness polar maps:

- 1. Select the AI tool of your choice as detailed above
- 2. Once contours have been detected, move the mouse in the analysis frame and click 'm' for a multiview display
- 3. Review the segmentation in all slices
- 4. Correct where needed
- 5. Click Add to Report

WARNING: Automatic Contour Detection

The expected input for the volume calculation in this module is a series containing parallel slice in the short axis direction.


Endocardial contours must always be inside the epicardial contour. **cvi42** does not check for that. In case of missing contours in one slice linear interpolation is done if possible.


Module calculations in **cvi42** are in generally done based on the current state of contour definition and image selections. For every change in this state, the calculations are updated immediately. It is the responsibility of the user to decide whether the stage of contour definitions reflects the desired measurement task before releasing final results

15.4.2 How to Do a Mitral/Tricuspid Valve Plane Correction

1. Visually identify the most basal slice of the left ventricle and/or the outflow tract

4. The correction will be calculated automatically

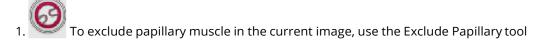
15.4.3 How to Do Manual Phase Shifting Per Slice

In case of mis-triggered slices:

v	1 D	2	3	4	5	6	7	8	9 🗞	10	11	12	13	14	15	16	17	18	19	2(▲
1	to	¢	÷	÷	÷	÷	-(b	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	
	\$	¢	¢	49	4	¢	÷	¢	\$	÷	4	ф	ф	ф	ф	ф.		4	¢	
2	0																			¢.
2	ф. 	4 4																		
3	Ç			Gr	ab an	d dra	g 🦕		(O)											
4	÷	à	v	÷	÷	¢	÷	÷	÷	1	•	÷	÷	÷	÷	÷	÷	÷	÷	c
	÷.	C.								Ŷ										¢
5	to								đ							Ur	nlock	÷		1 6
	A.	¢							- 1									+		
	tions Ise Bas	al and	Apica	l Gap f	or Volu	me Ca	lculati	on							Kes	et/ sa	ive		0	G
	1. Clic																	finitional 9)/1	/1	
2	2. In t	he sli	ce, g	rab th	e box	with	corre	ect dia	stolic	phas	se and	d shift	t it inte	o the	red bo	хс			\mathbf{O}	
3. Delete any existing contours that are outside diastolic and/or systolic phase																				
4. Delineate the myocardium for the newly defined systole and diastole																				
5. Click the lock again																				
¢	The	nha	so sh	ift will	l ho re	mom	horo	d and	ic ctor	od i	a thay	worke						TTE IN SA	100	

6. The phase shift will be remembered and is stored in the workspace

Only if you want to run the ML based automatic contour detection after phase shifting, you have to


save the shifted series. This will create a manually composed series.

7.

8. Load the new series and run the ML contour detection

15.4.4 How to in/exclude Papillary Muscles

By default, the automatic contour detection will include papillary muscles in mass calculations and exclude from the lumen. This can be changed in the *Preferences*.

2. To exclude them when using an automated contour detection method, go to the *Preferences/Contour:*

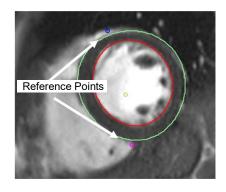
3. Check "Use Simplified Endocardial Contour". Using automated edge detection, the software will apply a simplified contour, cutting offtrabecular structures

4. De-select Detect *papillary muscle contours* to turn off the detection of papillaries within the LV lumen (pink contour)

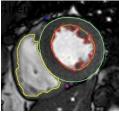
Include papillary muscles in the current image: SA papillary muscle contour tool

15.4.5 How to Create and Display a Volume Curve

Define endocardial and epicardial contours in all phases.



- A click on the volume curve button will display a graph next to the study display frame.
- Peak Ejection Rate and Filling Rate and Peak wall thickness will be reported in the Scientific Report (Report Module)

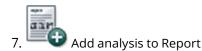

15.4.6 How to Do a Regional Wall Motion Analysis

- Define the analysis range: Define length of anatomical long axis using the LA LV Extent Contour button. (see above)
- 2. Define reference points for the segmentation: In the analysis window select a mid-ventricular slice and set the points at the anterior and inferior insertion of the RV

Note: The segmentation points don't have to be adjusted in the remaining images.

Display Polar Map: To view the polar maps click the View Regional Function button

15.5 10.00 mm 4.0 7.8 10.8 12.7 15.5 10.00 mm 4.0 7.8 10.8 12.7 15.5 10.00 mm 4.0 7.8 10.8 12.7 15.6 15.8 15.8 1	
Wall Motion (mm) 115.5 mm (AHA)	
🛛 AHA Segments 🗏 Coronary Territories 🗹 Use LAX	

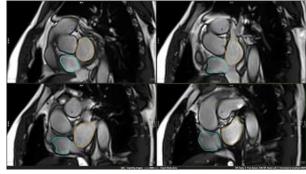

- Chords: Range between 2 and 100 chords. (segments will be counted clockwise)
- For non-AHA polar maps, there is the option to specify whether the LV LAX extent contour is used to define the spatial limits of the polar map representation. If "Use LAX extent" is turned off, the first and last slice in the LAX extent will define the spatial limits of the polar maps. When adding the polar map to the report, the LAX reference image, containing the LV LAX extent and SAX reference lines, will be attached to the report image. If "Use LAX extent" is turned on, the basal and apical points of the LAX extent will define the spatial limits of the polar map representation.
- AHA segmentation: Volumes per AHA segment will be reported in the Scientific Report

3. From the menu select wall thickening/motion or wall thickness (Diastole/Systole). The chords in the analysis image reflect the wall thickness measurements (not the segment border)

Add analysis to Report. Max. diastolic wall thickness will be reported in the scientific report

- 5. RMB click allows to export the polar map
- 6. Repeat for all slices you want to include in the analysis.

Note: Make sure to always use the same technique, either in or exclude papillaries and/or delineate trabecle. Left and right SV should match. Follow-up results done with a different contouring technique can mimic deterioration.


15.4.7 How to Do Atrial Volumetry

By default, the atrial contour buttons are hidden. In the protocol pane go to the wrench to edit the interface and activate the buttons.

15.4.7.1 How to Do Atrial Volumetry in Short or Long Axis Orientation

- The atrial volumes will be reported for LV systole and diastole andtherefore require the definition for the LV end-systolic and end- diastolic phase.
- 2. Drag a stack of parallel images, long or short axis, into the analysis frame. If there is no LV analysis applicable, you can manually define thephases. Please refer to the chapter "Manual Definition of Systole and/orDiastole for LV and/or RV"
- 3. Click on the *SAX Left Atrium Contour* tool to trace the border of the leftatrium
- 4. Use the SAX right Atrium Contour tool for the right atrium
- 5. The software will report ESV, and EDV for the right and left atrium

16 Tissue | Signal Intensity

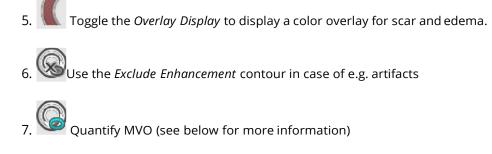
16.1	Analysis of LGE and T2 Images							
	16.1.1 How to Do Scar and Edema Analysis							
	16.1.2 How to Do T2 Ratio Analysis							
	16.1.3 How to Assess Microvascular Obstruction							
	16.1.4 How to Do Greyzone Analysis							
	16.1.5 How to Assess Salvaged Area at Risk							
16.2	Early Enhancement Analysis							
	16.2.1 How to Assess the Early Gd Enhancement Ratio							
16.3	Regional LGE and T2 Analysis and Assessment of Transmurality							
	16.3.1 How to Do Segmental Scar and Edema Analysis							
	16.3.2 How to Assess Transmurality							
	16.3.2.1 How to Display a Greyzone Polar Map							
16.4	LGE AI Contour Detection							

cvi42 provides four adjustable viewer frames for determining various tissue characteristics by CMR methods.

When using the Tissue | Signal Intensity Module, if "Auto Load Series in Module" is enabled, cvi42 will auto-load an appropriate Late Gadolinium Enhancement (LGE) series into the first frame and a LAX LGE series into the reference frame. If no LAX LGE series is available, cvi42 will auto-load a LAX CINE series into the reference frame.

16.1 Analysis of LGE and T2 Images

16.1.1 How to Do Scar and Edema Analysis


- 1. Drag and drop series into the frames marked "Late Enhancement" and "T2" respectively.
- 2. Derive existing contours via *Context Menu/Contours/Derive Cardiac Contours*. If no contours are present, draw endocardial and epicardial contours for each slice.

3. Synchronize Contours: Provided that T2 and LGE images have the same slice location, contours will automatically be copied to the other frame.

Segment Reference ROIs: Automatically detect a reference ROI. The blue contour will depict the remotemyocardium and the pink contour a reference ROI for FWHM algorithm in the enhanced area

8

Click on *Display Result* to view the analysis

Add measurements to report by clicking the *Add to Report* button

16.1.2 How to Do T2 Ratio Analysis

Ø

Select the *Skeletal Muscle* contour tool and draw a contour within skeletal muscle in every slice. The percentage as well as the SI ratio will be reported on the right bottom corner of the frame

2. Activate the T2 Ratio Overlay

3. Repeat for all slices

16.1.3 How to Assess Microvascular Obstruction

C

. 🥍 To quantify a 'No Reflow Area' (depicting MVO - micro vascular obstruction), use the No Reflow Contour button

- 2. Roughly draw a contour around the region with low signal
- 3. 💷 🖾 Click on Display Result to view the analysis

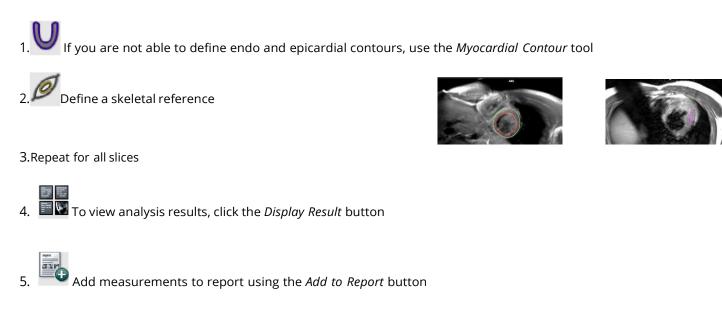
16.1.4 How to Do Greyzone Analysis

- 1. Check the box Greyzone Analysis
- 2. Select a threshold

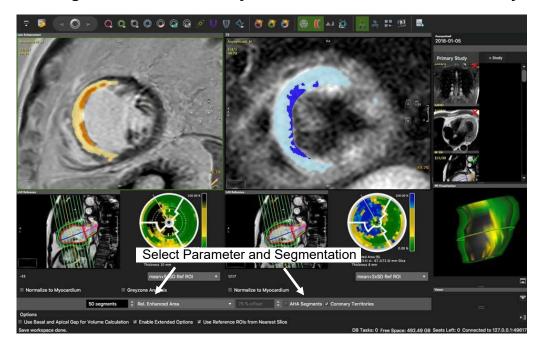
16.1.5 How to Assess Salvaged Area at Risk

Using the results of LGE and T2 segmentation, calculation will be done automatically by subtracting scar from edema volumes.

You will find the quantified area at risk in the result pane (click on the Display Result button).


Note: It will not be calculated in case

- slice locations are not matching
- number of slices are not matching there is a difference of myocardial volumes > 10%


16.2 Early Enhancement

16.2.1 How to Assess the Early Gd Enhancement Ratio

Draw endocardial and epicardial contours in T1 pre and post contrast images.

16.3 Regional LGE and T2 Analysis and Assessment of Transmurality

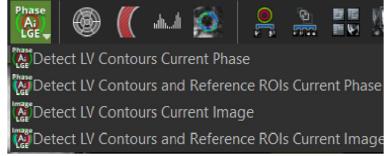
button

16.3.1 How to Do Segmental Scar and Edema Analysis

- 1. Set Segmentation points
- 2. Define length of anatomical long axis using the *LAX Extent* contour button: Set 3 points, where the first two define thebase, and the third point is set in the apex.
- 3. Select Parameter from drop-down menu

For the *Enhanced Area* you have the option between custom and AHA segmentation.

16.3.2 How to Assess Transmurality


- 1. Repeat step 1-2
- 2. Select *Transmurality* from the drop-down menu at the bottom of the page
- 3. If you want to display a defined percentage, select *Transmurality Offset* and set the percentage with the arrowkeys

16.3.2.1 How to Display a Greyzone Polar Map

- 1. Repeat steps 1-2
- 2. Select *Relative Greyzone* from the menu (make sure you have defined a threshold for the greyzone and activated the analysis option)

16.4 LGE AI Contour Detection

• There are four LGE AI options.

- Detects LV endocardial and epicardial contours, anterior and inferior RV insertion on all slices of the selected phase. A LV LAX series will be automatically loaded into the reference frame and the respective LAX extent will be detected. This can be checked by activating the polar map visualization.
- Detects LV endocardial and epicardial contours, anterior and inferior RV insertion points and references of remote and enhanced myocardium on all slices of the selected phase. A LV LAX series will be automatically loaded into the reference frame and the respective LAX extent will be detected. This can be checked by activating the polar map visualization. With a single click, the user obtains the LV LGE quantification and respective polar maps.
- Detects LV endocardial and epicardial contours, anterior and inferior RV insertion points on the selected image.
- Detects LV endocardial and epicardial contours, anterior and inferior RV insertion points and references of remote and enhanced myocardium on the selected image.

NOTE: This is the first version of the LGE AI automatic contour detection function, and the accuracy is very dependent of a high image quality. The user must check carefully each contouron each image and correct them whenever necessary. By default, the tool is not shown in the interface. To activate it, the user must click on "Edit Protocol Step", activate the tool and save itto the protocol in use:

17 Tissue | T2* Mapping

17.1 How to Do T2* Analysis

Intended use:

T2* quantification and mapping for myocardial tissue characterization (iron, hemorrhage, thrombus)

17.1 How to Do T2* Analysis

For global T2* times, draw an endocardial and an epicardial contour for the assessment of global T2* values

. P. Draw a ROI contour in the septal wall for regional T2* values

3. **Doctor** Forward contours to other images within the series or via context menu Forward Contour

T2* values will immediately be displayed, as well as the absolute iron content (1.5 Tesla only) T2* decay curves will immediately be displayed, choose a fitting algorithm (nonlinear=default) and a fitting correction method from the option menu

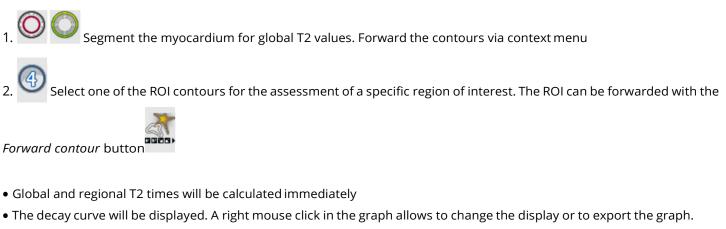
5. Create DICOM grayscale map. In addition to the grayscale map a R2 map will be created. You will find both maps combined in one series. They will be appended to your thumbnails

18 Tissue | T2 Mapping

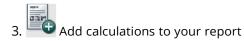
18.1	T2 Measurements
	18.1.1 How to Do a T2 Analysis
	18.1.2 How to Apply a Motion Correction to T2 Series
18.2	Т2 Мар
	18.2.1 How to Analyze T2 Maps

Intended use:

T2 quantification and mapping for myocardial tissue characterization (edema)


18.1 T2 Measurements

The module consists of two pages:


- T2 Measurements: that allow for the assessment of T2 times
- T2 Map: and the analysis of a T2 map

In order to exclude any extra map attached to the raw data, it is possible to skip the last 1 or 2 phases of the series for T2 calculations.

18.1.1 How to Do a T2 Analysis

In the option menu choose a fitting algorithm and a fitting correction method

Note: Automate DICOM map generation by checking the box for *Create map upon loading*. Save this step to your protocol. The next time a T1 sequence will be loaded, the map will be generated automatically

18.1.2 How to Apply a Motion Correction to T2 Series

1. Make sure you have endo- and epicardial contours in all images.

- Set the Segmentation point
- 3. Select the image with the best contrast and enter the phase that you would like to use for theregistration
- 4. Click the registration button: The new series will be created and automatically loaded into the respectiveframes
- 5. If you decide to use a different phase for registration, reload the original series and repeat steps 1-4

Note: The registration works for points that are on or inside the contours; the image outside of the contours may appear warped or distorted after registration. This is expected, and users should not use any outer regions foranalysis

18.2 T2 Map

18.2.1 How to Analyze T2 Maps

- 1. Drag and drop the map from the thumbnail panel into the respective window
- 2. Draw, derive, or automatically detect LV contours for a segmental analysis
 - 2.1 AI based contouring tools, **1**, are supported for LV Endo/Epi contours and the RV insertion points on T2 maps.

- 2.2 The user can derive LV contours from the Cine SAX stack, provided the SAX stack has previously been contoured.
 - 3. Drag a long axis reference into the reference window and define the extent of the left ventricle: Set 3 points, the firsttwo define the base, the third defines the apex and thereby the extent of the LV
 - Add analysis to the report. The values can be found in the scientific report

19 Tissue | T1 Mapping

19.1	Module Layout
19.2	T1 Analysis (native and post contrast)
	19.2.1 How to Load Various Sequences
	19.2.2 How to Do Global or Regional T1 Analysis
19.3	Motion Correction for ECV map generation
	19.3.1 How to Do Intensity Based Registration
	19.3.2 How to Do Feature Based Registration
19.4	T1 Map Analysis
	19.4.1 T1* Maps
	19.4.2 How to Analyze the T1 Map
19.5	ECV and lambda quantification (λ)
	19.5.1 How to Do Segmental ECV and Lambda Quantification

IMPORTANT: Due to differences between scanners and mapping sequences, results must be interpreted using the locally validated standards of the reading institution.

Intended use:

T1 quantification and mapping for myocardial tissue characterization (fibrosis, edema, tissue infiltration).

19.1 Module Layout

Analysis options are organized in pages:

- T1 Native: T1 values and recovery curve for global and/or regional myocardium
- T1 CA: s.a. post contrast
- T1 Map Native: T1 and R² maps and a segmental polar map display (1-100 or AHA)
- ECV/ λ : Polar maps and global/per slice ECV and partition coefficient (λ) quantification

19.2 T1 Analysis (native and post contrast)

19.2.1 How to Load Various Sequences

- 1. Load the sequence from the thumbnail panel
- 2 Select the correct sequence in the T1 options menu
- 3. In the T1 options menu of the T1 calculation tab it is possible to skip the last 1 or the last 2 phases of the series for T1 calculations, to exclude any extra map attached to the raw data.
- 4. In the DICOM header the TI time can be encoded in the field for the Trigger Time. To address this, from the option

menu, check the box for Use Trigger Time as Inversion Time If the series is rejected, it could have been due to one of

the followingreasons:

- The last image of the series is a scanner generated map (Siemens). **Solution:** In the option menu, check the box for *Skip Last Slice Image*
- In the DICOM header the TI time is encoded in the field for the Trigger Time (Philips). **Solution:** In the option menu, check the box for Use Trigger Time as Inversion Time
- During anonymization the information for TI has been stripped and you get a warning message "TI times are equal." **Solution:** Go to the patient list module and in the *Extended view* check if the information for the TI can be found under either *TI* or *Image Comments* (Siemens). If possible, try to re-anonymize the data, preserving the Tlinformation

Note: Some recent **Siemens** sequences use a correction or scaling factor for the calculation of T1 times. You will find the scaling factor in your Siemens documentation. Enter the factor in the option menu. Alternatively, use Siemens-generated maps.

19.2.2 How to Do Global or Regional T1 Analysis

1. For global T1 values, draw endocardial and an epicardial contours. Forward the contours via context menu *Forward All Contours Slice (*short-cut: **#**E/Ctrl E)

For regional analysis, select one of the ROI contours. This contour can be forwarded via toolbar button

- 3. Repeat for all slices
- 4. Global, regional T1 Relaxation times and R²-values will be shown in the result frame
- 5. The T₁ recovery curve will be presented in the frame below. RBM click in the graph opens a *Context Menu* offering display options

2.

Example 2 Create DICOM map

- 7. Automate DICOM map generation: In the option menu, check the box for *Create map upon loading* and save this step to your protocol
- 8. For the post-contrast series, contours can be derived via context menu: *Derive Contours>Derive Contours Cardiac Phase,* willderive previously drawn contours for all slices

Add evaluation (images, values and graph) to the report

19.3 Motion Correction for ECV Map Generation

- *Intensity-based* registration is to be used with already motion corrected images and will register between preand post- contrast series
- Feature-based registration registers all images (pre- and post-contrast) to a selected image in the native series. Therefore, it is required to have contours in both the pre- and post-contrast series as well as in allslices
- Go to the respective pages and select the motion correction of your choice

19.3.1 How to Do Intensity Based Registration

- 1. Identify motion corrected series in the thumbnail panel
- 2. Drag the series into the respective pages: T1 Native/T1 CA
- 3. Choose a phase with good contrast between endo- and epicardial contour as well as between surrounding tissues in both thenative and post contrast series. Avoid images with bright intensities in the outer regions (areas of fat, air regions, etc.)
- 4. In the *Registration Options* enter the phase number:
- 5. Native Registration Phase: Image in the native series to be the reference image
- 6. CA Registration: Image in the post contrast series, to be registered with the reference image

User Manual Version 5.13

- 7. Click the registration button
- 8. The registration registers the CA Series to the Native Series
- 9. To re-register, reload the initial series and repeat steps 1-6

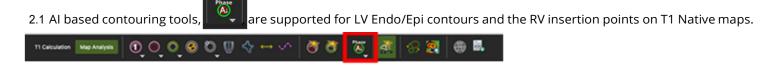
19.3.2 How to Do Feature Based Registration

This registration can be used on motion and non-motion corrected series. It registers every phase in both the native and post- contrast series to a chosen reference image in the native series.

- 1. Make sure you have accurately drawn the endo- and epicardial contours, as well as a segmentation point in all images, in pre- and post-contrast series
- 2. Select a reference image in the native series with the best contrast and enter the phase into *Native RegistrationPhase*
- 3. Click the registration button: Two new registered series will be created and automatically loaded into the respective frames. Contours of the reference phase will be forwarded to all registered images
- 4. If you decide to use a different phase for registration, reload the original series and repeat steps 1-4

Note: The registration works for points that are on or inside the contours; the image outside of the contours may appear warped or distorted after registration. This is expected, and users should not use any outer regions for analysis

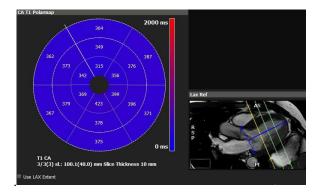
19.4 T1 Map Analysis


Either create map in **cvi42** or load a map that has been created by the scanner software.

19.4.1 T1* Maps

- T1* maps may offer a more accurate estimation of blood poolT1
- T1* maps will be automatically extracted of Molli, shMolli and Molli Oxford sequences

19.4.2 How to Analyze the T1 Map


- 1. Drag the map from the thumbnail panel to the analysis window
- 2. Draw or derive contours for a segmental analysis


On all frames, the user can derive LV contours from the Cine SAX stack, provided the SAX stack has previously been contoured.

- 3. For a color-coded display, select a color map from the drop-down menu or create your own LUT
- 4. For a segmental polar map display, place an anterior and inferior SAX Reference point
- 5. Define the left ventricular extent in the reference window

- 6. In the polar map frame, the number of segments per ring can be customized or you can switch to a 16- segment AHA model
- 7. For non-AHA polar maps, there is the option to specify whether the LV length (LV LAX extent contour) is used to define the spatial limits of the polar map representation. If "Use LAX extent" is turned off, the first and last slice in the LAX extent will define the spatiallimits of the polar maps. When adding the polar map to the report, the LAX reference image, containing the LV LAX extent and SAX reference lines, will be attached to the report image

If "Use LAX extent" is turned on, the basal and apical points of the LAX extent will define the spatial limits of the polar map representation.

8. In the *T1 Options* Apply and endo and epicardial offset to make sure that only LV myocardial tissue in included in the quantification

Add evaluations (images, values)

19.5 ECV and Lambda Quantification (λ)

19.5.1 How to Do Segmental ECV and Lambda Quantification

Make sure you have contours, segmentation points and a blood-pool contour in all slices in both *T1 map Native* and *T1Map* CA. The blood pool contour can be drawn either in the *T1 or the T1* map* Enter the hematocrit for the ECV quantification

3. Add an ECV map

4. 🛡 F

. For a polar map display, make sure you have defined the Long Axis Extent in the reference frame of the *T1 Map Nativeand T1 Map CA* page

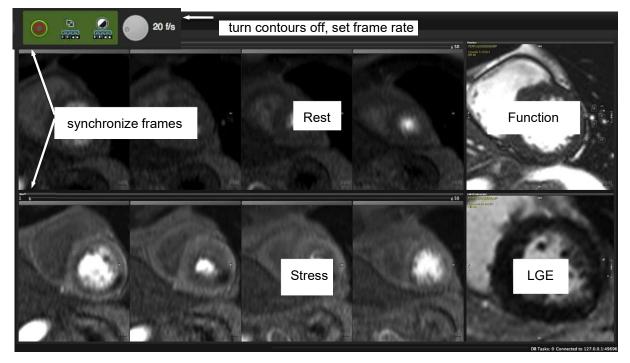
5. Add evaluation (images, values and graph) to the report

20 Perfusion | Semi-quantitative

20.1	Multi View Compare Rest and Stress Perfusion
	20.1.1 How to Do a Visual Perfusion Analysis
20.2	Edit Contour, Semi-Quantitative Analysis
	20.2.1 How to Do Semi-Quantitative Perfusion Analysis
	20.2.2 Option Menu
	20.2.3 How to Analyze Perfusion Curves
20.3	Analysis, Segmental Analysis

Intended use:

Visual and semi-quantitative assessment of myocardial perfusion


The Perfusion module consists of 3 pages:

- Multi View: Compare rest and stress perfusion with scar images and wall motion kinetics
- Edit Contour: Semi-quantitative analysis
- Analysis: Polar Maps

WARNING: Perfusion | Semi-quantitative
 Perfusion analysis should not be done on GE dual-bolus or pre-bolus sequences. For more information, please contact GEHC.

WARNING: Perfusion | Quantitative Analysis of Enhanced DICOM datasets is not supported in the Quantitative Perfusion module.

20.1 Multi View Compare Rest and Stress Perfusion

20.1.1 How to Do a Visual Perfusion Analysis

- 1. Adjust window and zoom for rest and stress series
- 2. To set the frame rate use the wheel in the toolbar
- 3. Turn existing contours off (toolbar button)
- 4. Synchronize the frames for rest and stress by using the slider
- 5. If applicable, drag Late Enhancement and Function images into their respective frames for comparison
- 6. Add the Floating Viewer for more viewing options

20.2 Edit Contour, Semi-Quantitative Analysis

20.2.1 How to Do Semi-Quantitative Perfusion Analysis

- 1. Drag the appropriate series in the Rest and Stress frame and adjust viewer properties
- 2. Select a phase with good contrast and draw endo- and epicardial contours

3. We Draw a Blood Pool contour, (input function) in the brightest, most homogeneous area of the blood pool

4. Check Use Bloodpool Contour in the Options (underneath the graph)

 $^{\prime\prime\prime}$ Set the anterior and inferior segmentation reference points at the insertion of the RV to the epicardial border of the LV

ar

6. Contour Propagation: Forward all contours, including blood pool contour and segmentation point to the remaining phases.

- Check and adjust contours for each phase within the analysis range. Use the align contour button to correct for breathing motion
- 8. Choose between AHA or custom segmentation
- 9. Define the analysis range (contrast inflow during first pass) by moving the left and right slider at the bottom of the graph. Alternatively, set start and end frame via context menu. This will also limit the frames in the 'Multi View' to the defined range
- 10. Apply baseline correction via context menu (right-click in the graph)
- 11. For a special region of interest, there are 4 additional contours in the top tool bar. To view the curve,

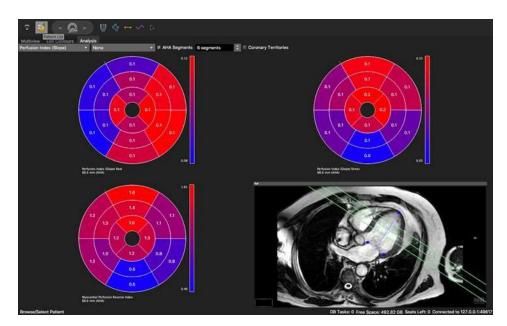
check the respective ROI in the Option menu

. 🕶 Repeat for all slices and add results to the report

20.2.2 Option Menu

- Endo/Epi: Exclude sub-endocardial and/or sub-epicardial layers
- Fit points Choose the number of points that will define the slope
- Skip Images: you can exclude images from the from baseline
- Segments: Choose between custom segments (up to 100) or AHA segmentation
- Myocardial Analysis: Analyze different layers
- Blood Pool contour: Checked, it requires to define a blood pool contour
- Basal Blood Pool Contour: The software only uses the most basal blood pool contour
- Check a box to view the perfusion curve of a drawn ROI

20.2.3 How to Analyze Perfusion Curves


1. To switch to an enlarged view, go to the context menu and check Enlarged View

Move the mouse cursor over the icon to view the curve of the respective segment

- 3. Display semi-quantitative parameter such as upslope or time to max. from the context menu
- 4. Optionally apply a baseline correction
- 5. Exit the Enlarged View via context menu (uncheck)

20.3 Analysis, Segmental Analysis

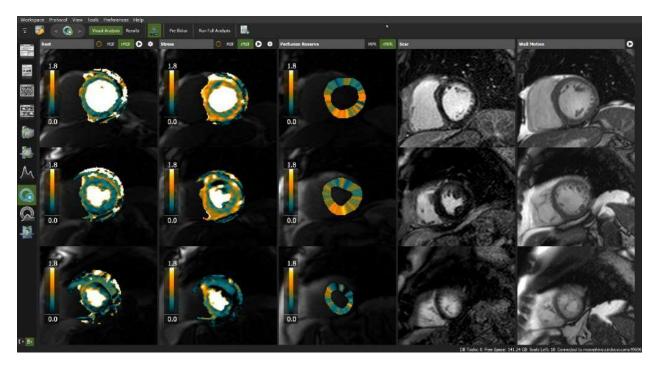
How to do a regional perfusion analysis:

1. Define length of anatomical long axis using the LAX LV Extent Contour button

- 2. Select a parameter from the drop-down list
- 3. Apply a baseline correction

21 Perfusion | Quantitative

21.1	Analysis
	21.1.1 Workflow
21.2	Result Review
	21.2.1 Rest and Stress Pixel Maps
	21.2.2 SI Curves
	21.2.3 Polar Maps
21.3	Report


Intended Use

This module allows for quantitative analysis of myocardial blood flow for the detection of coronary artery disease and microvascular dysfunction as well as rapid generation of pixel-wise myocardial blood flow maps for visual depiction of ischemia.

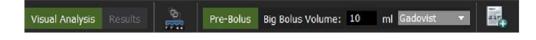
WARNING: Perfusion|Quantitative Perfusion analysis should not be done on GE dual-bolus or pre-bolus sequences. For more information please contact GEHC.

WARNING: Perfusion|Quantitative Analysis of Enhanced DICOM datasets is not supported in the Quantitative Perfusion module.

21.1 Analysis

21.1.1Workflow

The software supports the following techniques


- Dual bolus, single sequence.
- Pre-bolus, single sequence.
- Single bolus, dual sequence.

1. Adjust settings for the protocol in use

Pre-bolus injection scheme:

Before loading any series in the analysis frame, click <Pre-Bolus>, enter the volume of the big bolus and select the contrast agent used.

(Otherwise, start on step 2.)

2. Load series

From the thumbnail panel, select the following series via double-click in the order below, or drag and drop.

- Short axis perfusion rest series into <Rest> column.
- Short axis perfusion stress series into the <Stress> column.
- Optionally, load LGE and function images in <Scar> and <Wall Motion> columns for reference.
- If prompted, select the correct AIF from the thumbnail panel, and drag it into the AIF selector.

• Click <Run Full Analysis>.

If needed, the HR can be manually entered (next to the AIF selector). Otherwise, the HR will be automatically calculated during the analysis. The HR in use will be displayed on the AIF graphs in the Results page.

- 3. Map Review Myocardial Blood Flow
- MBF-pixel-maps are automatically overlaid on rest and stress perfusion images.
- To visually assess the first pass perfusion, click and run the cine **O**.
- Click on (MBF/remote MBF) to review the relative myocardial blood flow.

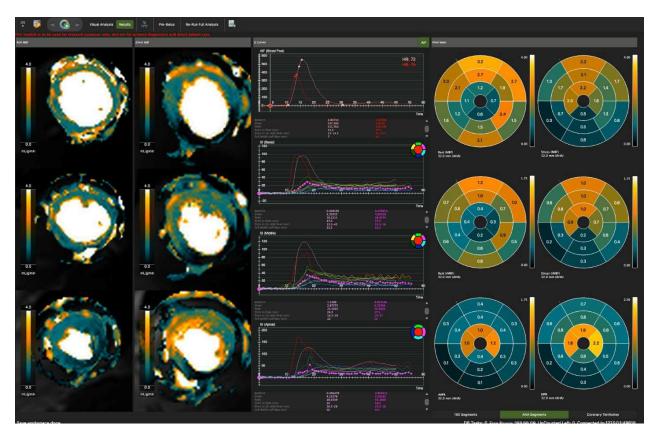
4. Map Review – Myocardial Perfusion Reserve (MPR)

- Color-coded MPR (MBF stress/rest) segments will be displayed in the middle column.
- Click on rMPR (MPR/remote MPR) tab to review the relative myocardial perfusion

5. Review Segmentation

Contrary to MBF maps, the calculation of MPR and polar maps rely on accurate delineation of the myocardium. Prior to interpretation, the user should verify endo- and epicardial contours.

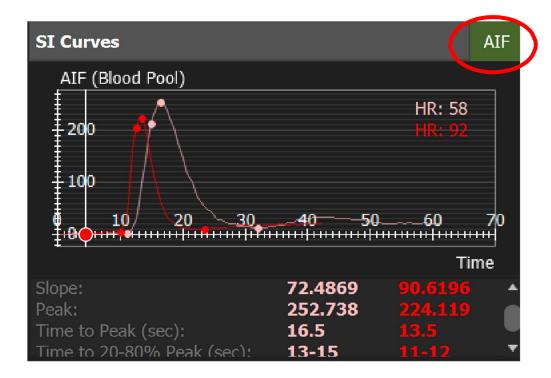
User Manual Version 5.13


Note: Outliers (white pixel within the map) will be excluded automatically from the calculation ofblood flow and is reflected in the maps.

- Click on the contour icon in the header bar and optionally toggle MBF maps on/off.
- Correct contours if needed: Contour correction tools will be provided in the shadow box in the leftbottom corner of the view frame.
- After contour correction re-run analysis.

21.2 Results Review

The <Result> tab provides for review of the following:



21.2.1 Rest and stress pixel maps

Rest MBF: Myocardial Blood Flow at baseline. Stress MBF: Blood Flow during vasodilation.

21.2.2 Signal Intensity Curves

AIF and Segmental Perfusion Curves

1. Hovering over a colored coded segment in the slice specific segment icon will display associated segment perfusion curves.

- 2. Clicking the segment in the icon will hide the curve.
- 3. Click and hold a data-point to display the associated values.
- 4. Review Perfusion parameters:
 - Baseline
 - Slope
 - Peak
 - Time to Peak
 - Time to 20 to 80 % of peak value
 - Full Width Half Max

21.2.3 Polar maps:

- 1. Review polar maps, checking the various segmentation options (100 Segments, AHA, Coronary Territories).
- Add Results to the report Polar maps will appear in the Clinical Data Report and integrated report.

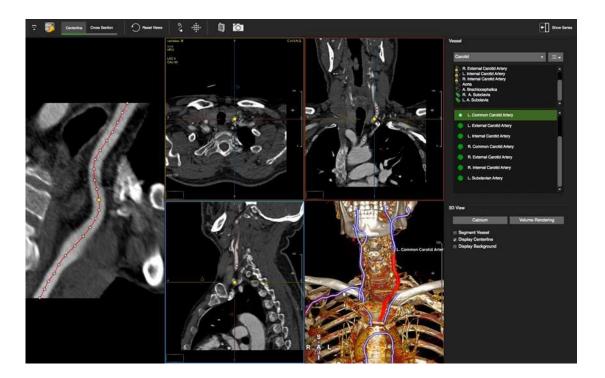
21.3 Report

The following will be exported to the clinical Report:

- Rest and Stress MBF and rMBF values, separated by coronary territories.
- Rest and Stress MPR and rMPR values, separated by coronary territories.
- Blood pool AIF SI graph.
- Rest and Stress MBF maps.
- AHA polar maps for coronary territories.
- For more detailed reporting, please see the scientific report.

22 Vascular Module

22.2 Centerline page

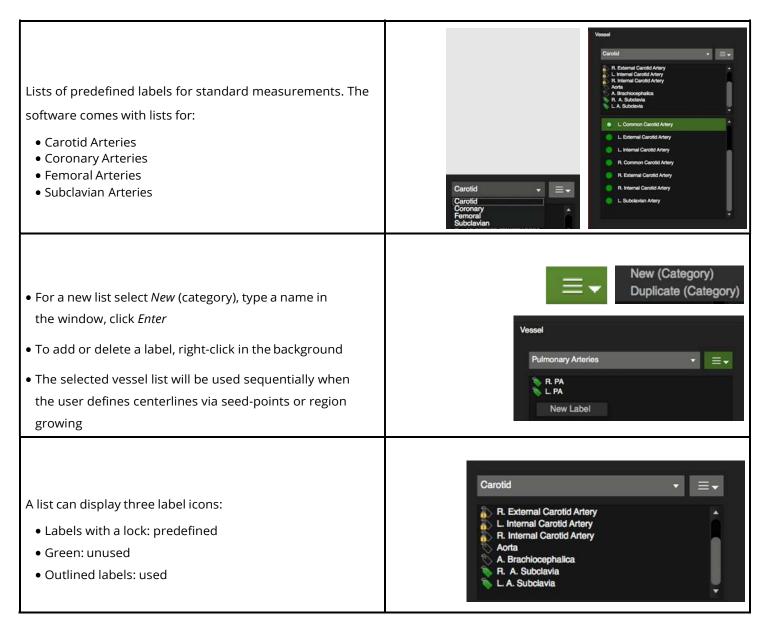

- 22.2.2 Main Page
- 22.2.3 Vessel Lists
- 22.2.4 Region Growing
- 22.2.5 Edit the Centerline

22.3 Cross Section

22.3.2 How to Do a Stenosis Assessment

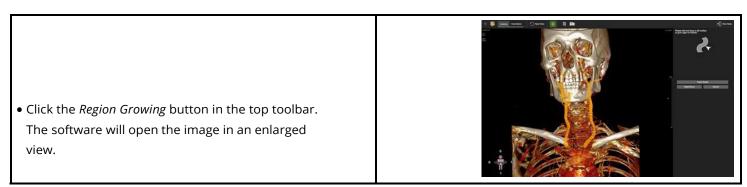
The module covers two topics:

- Centerline: Centerline extraction of any vessel using orthogonal MPR views
- Cross Sections: Visual and quantitative assessment

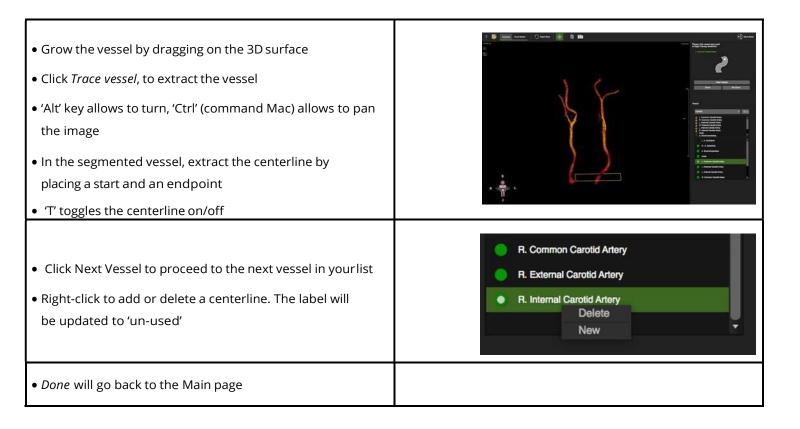


22.1 Centerline Page

22.1.1 Main Page

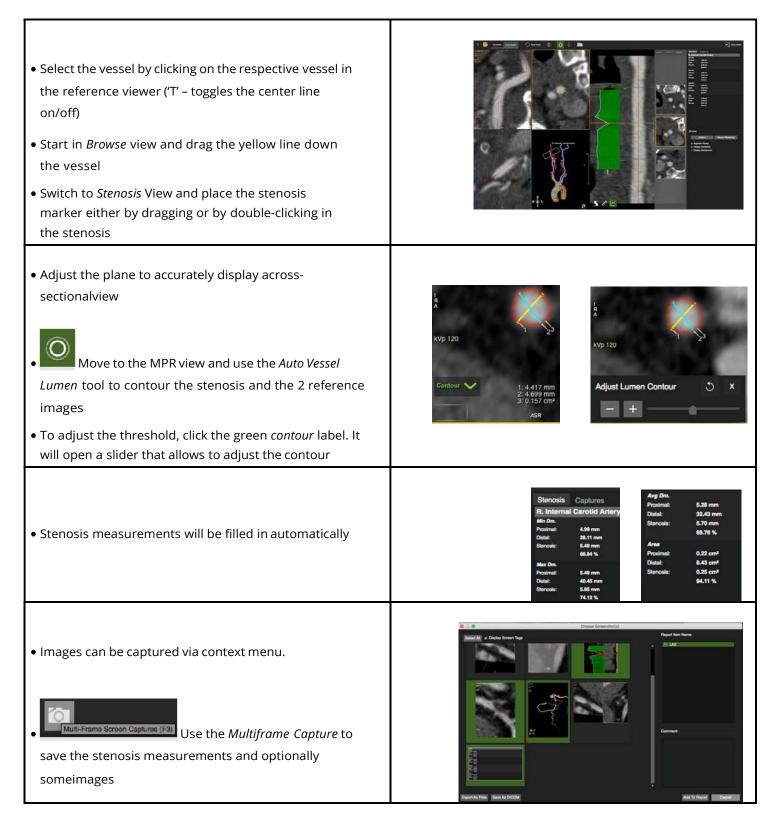

Trace a centerline by setting a start and an end seed point (see Coronary module)

22.1.2 Vessel Lists



22.1.3 Region Growing

Trace a centerline via region growing.


22.1.4 Edit the Centerline

 You can move the centerline control points in the CPR or the oblique views Add control points with a double-click on the centerline 	
 Delete a control point with a right mouse click Rotate around the centerline with a left mouse drag close tothe centerline Pan the image by moving the cursor away from the centerline until the hand symbol appears 	Delete Point

22.2 Cross Section

Stenosis Assessment

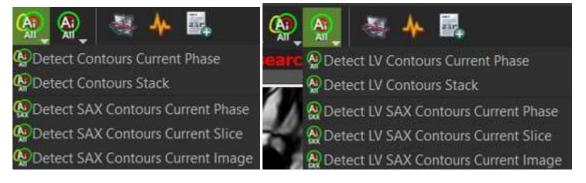
22.2.1 How to Do a Stenosis Assessment

23 Strain

23.2	Auto Contour Detection Using Al
23.3	Strain Analysis
	23.3.2 How to do LV 2D Strain Analysis
	23.3.3 How to do 3D Strain Analysis
	23.3.4 How to do RV Strain Analysis
23.4	Performance Check and Adjustments
23.5	4D LV Visualization
	23.5.2 How to View a Strain Cine Loop
23.6	Regional LV Analysis
	23.6.2 How to Display Polar Maps
	23.6.3 How to Evaluate a Single Segment
23.7	Diagrams for Strain, Displacement and Torsion
	23.7.2 How to Display Strain and Displacement Diagrams.

Intended use:

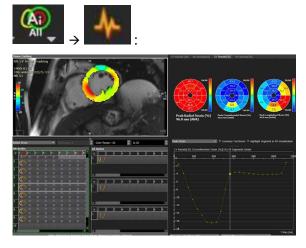
Assessment of myocardial deformation.


When using the Strain Analysis Module, if "Auto Load Series in Module" is enabled, cvi42 will identify and auto-load appropriate SAX and LAX series.

23.1 Auto Contour Detection Using AI

• There are two main Al icon tools, the left-hand tool will detect LV (endocardial and epicardial) and RV (endocardial) contours, and the righthand will detect LV contours only.

• Right-mouse clicking on each of the AI tools will open a dropdown menu with other AI contour detection options.



• "AI All" means that **cvi42** will detect the contours on the selected phase for all loaded series (SAX and LAX). If a SAX image is selected, it is possible to run the automatic contour detection on the selected phase of the SAX series only. Whenever the SAX

contours are detected, the respective anterior and inferior RV insertion points will also be automatically detected. December 2021 • If a LAX image is selected, it is possible to run the automatic contour detection on the selected phase of all LAX series only. If the automatic classification of the LAX series in 2CV, 3CV or 4CV fails, it is possible to select the detection of a specific LAX series, by clicking on the LAX image and selecting the right option from the dropdown menu.

With two clicks the user can run obtain a complete LV strain analysis:

NOTE: Before running the strain analysis, the user must carefully check each contour on each image and correct them whenever necessary.

23.2 Strain Analysis

23.2.1 How to do LV 2D Strain Analysis

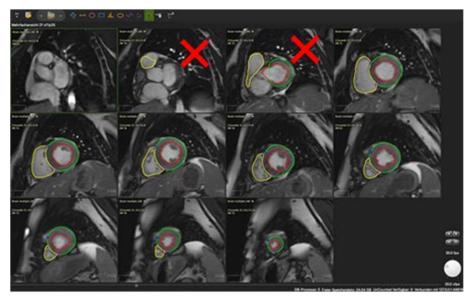
Load a short axis stack and long axis series into the analysis frame

Contouring the Reference Phases

• Visually select end-systolic and end-diastolic phase. Alternatively, check in the function module which phase has beenidentified as diastole and systole based on minimum and maximum volume. Make a note of the phase number.

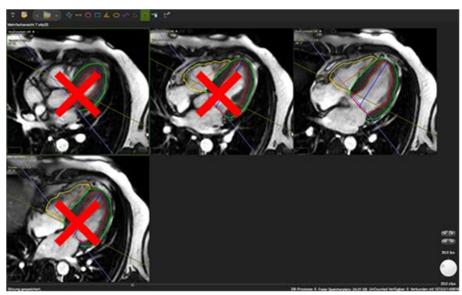
- Zoom in as far as possible and window properly. •
- Display an image in end-diastole. •

and make sure it is set to <Detect LV Contour in Current Phase>. This will segment LV in the Go to the Al button • end-diastolic phase in all series simultaneously.

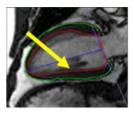

• For better tracking performance we recommend to additionally contour the systolic phase, which will serve the system as a guidance. Make sure you have activated the preference <Apply Temporal Smoothing>

• 0 •	Preferences
Appearance Viewer Series Overview Reporting Contours	Strain Analysis # 30
4D Viewer Strain Image Database Anonymization	Temporal Smoothing 2 Apply a temporal smoothing
License Workflow	3D Coordinate System for Strain Measurement III Use Global Cartesian Coordinate System III Use Local Heart Coordinate System III Use Local Heart Coordinate System
	To update the existing strain analysis results with different coordinate system, re-click the 'Strain Analysis' button. For more information about the coordinate system, please check: Regional Strain and Strain Rate Measurements by Cardiac Ultrasound. Principles, Implementation and Limitations European Heart Journal - Cardiovescular Imaging Sep 2000

Repeat step 5 for systole.


Contour Check

Short Axis

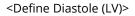


- In short axis go to <multiview> and click through the phases. Delete contours in phases where the LVOT comes into view or where the apex moves out of the plane.
- Zoom in and carefully check your borders. Ensure contours are placed in the myocardium avoiding chemical shift artefact or pericardium. Trabecle and Papillary muscles have to be excluded.

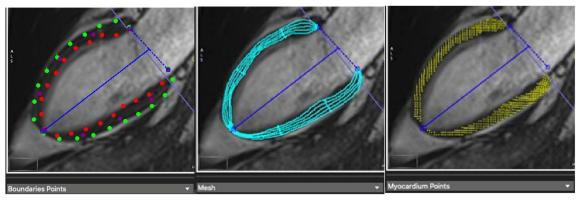
Long axis

- Verify that contours in end-diastole and end-systole have to be in the same phase as in the short axis!
- In case of multiple parallel long axis slices, only contour the slice that cuts through the true apex (see above). Otherwise, the otherslices will falsify the mean global strain values.
- Papillary muscles have to be cut off. Play the cine or slowly move through the phases to identify papillary muscle in systole.

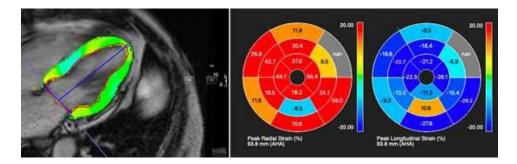
Perform Strain Analysis

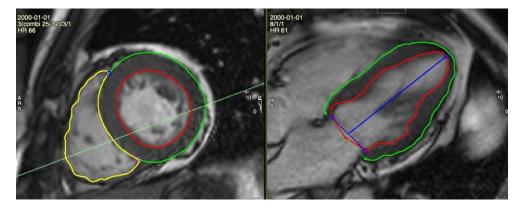

Make sure an image in end-diastole with the contours is selected in the viewport.

- Click the <Perform Automatic Strain Analysis> button.
- Strain will be calculated with reference to diastole.
- Based on the tracked borders, the system runs a volume calculation in the background and might now identify a different phase as diastole or systole.

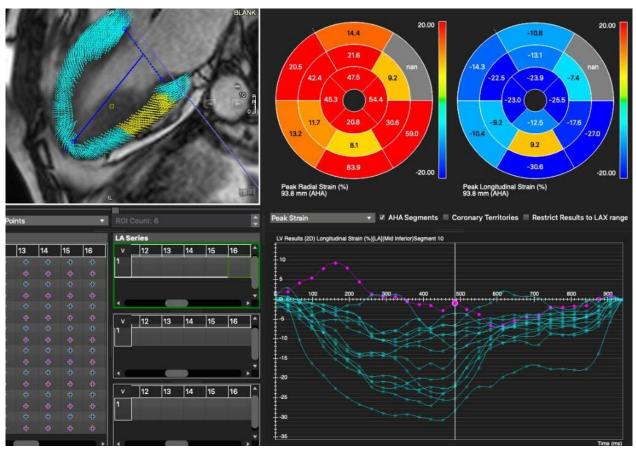

If you have deleted basal slices this is not reliable, and you should manually re-set the label: Right-click on the phase number and select

SA Series		
۷	1 <	Define Diastole (LV)
7	۵	S Define Systole (LV) Right-click
	ľ	Define Diastole (RV) On
8		S Define Systole (RV)




Tracking Quality Assurance

- Set Image Overlay to <Boundary points>, run the series, and check location, displacement, direction and vector length.
- <Mesh> visualizes the deformation of the centrelines,


- In long axis, check the tracking of the blue T-Line, which is indicative of tracking quality
- In short axis, check the tracking of the anterior insertion point.
- Check polar maps: Below an example where the basal, antero-lateral segment displays a grey segment (non-analysable), indicative insufficient coverage due to bad planning

The short axis reference of the respective 4CV reveals that the slice is off-axis.

• Setting the overlay to myocardial points and click on segment in the polar map. The segment will be highlighted in yellowin the respective image.

Options to enhance the tracking

- Set the overlay to boundary points.
- Add contours where the tracking starts to deviate. Only correct the contour that is affected and keep to the boundary points where you had good tracking.
- Go back to the end-diastolic phase and re-run the strain analysis.

Saving

- Click the Add to Report button.
- Save workspace DICOM.

23.2.2 How to do 3D Strain Analysis

Check the 3D strain option in the Strain preferences

It is recommended to have at least 3 short and long axis slices and 25 phases.

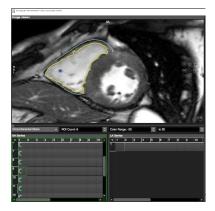
- 1. Sequentially load short and long axis (either a stack or 3 different radial cines) in the analysis frame
- 2. O Define endo- and epicardial SAX contours in all slices that that cover the LV. Make sure not to include blood volume

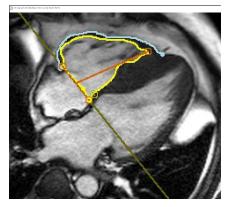
 \checkmark Define the anterior SAX reference point at the insertion of the right ventricle in a SAX

6.

In long axis, setting the *LV extend* will trigger an endocardial contour detection and vice versa

5. Correct if needed. Pay attention to exclude papillary muscle


Select the reference phase by clicking on an image within that phase and click the *Perform Automatic Strain Analysis*


button. Strain will be automatically computed in all slices, that contain endo- and epicardial-contours

- 7. Click the 3D LV Results tab above the polar maps
- 8. The software will generate polar maps, strain curves and a 4D contour model based on the tracking results

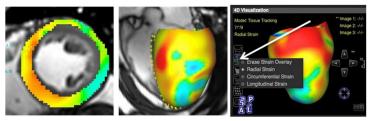
23.2.3 How to do RV Strain Analysis

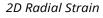
- 1. Load a short and/or long axis stack into the analysis frame
- 2. In a reference phase, define RV endo- and epicardial contours in all slices that cover the RV

- 3. For a segmental analysis:
- Load an orthogonal slice of the RV with the same number of phases
- Endo- and epicardial contours have to be drawn consistently in the same phase for long and shortaxis.
- Add an anterior and inferior insertion point
- 4. For 3D RV analysis it is recommended to load at least 3 additional orthogonal slices

Select the reference phase and click the *Perform Automatic Strain Analysis* button. Strain will be automatically computed in all slices, that contain endo- and epicardial contours.

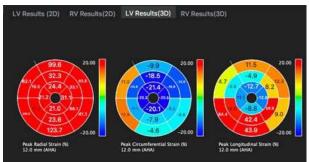
23.3 Performance Check and Adjustments


- Use the overlays to check the performance of myocardial tracking
- To review the parts of the myocardium that have been included into the strain analysis, based on the Restrict to LAX extend, select the Myocardial Points
- If you are not satisfied with the strain borders visible in the overlay, try to re-adjust contours or draw contours in a different phase, then re-run the strain analysis


23.4 4D LV Visualization

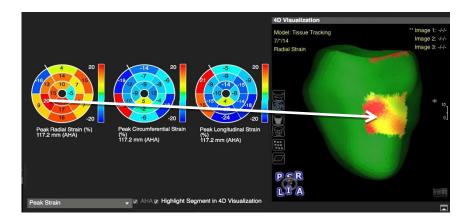
23.4.1 How to View a Strain Cine Loop

• After the strain analysis, you can view a cine loop of radial/longitudinal or circumferential strain in the *4DVisualization Viewer*


• Click the film icon or spacebar to run the movie. Cines are synchronized with the image viewer

2D/3D Visualization

23.5 Regional LV Analysis 23.5.1 How to Display Polar Maps

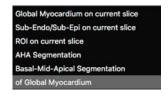


Polar maps display different values, which can be chosen from a drop-down menu.

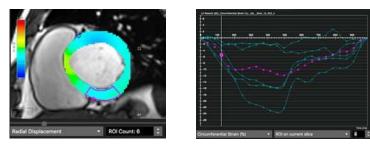
- To view polar maps for the different strain analyses, click the 2D or 3D Results tab
- A click on the polar map will automatically synchronize curves, image viewer and 4D viewer to display the selected strain, e.g. circumferential strain
- 2D results can be viewed for a 16-segment model or a defined number (between 6 and 24) of ROIs. To set the number of ROIsper slice, use the drop-down menu located underneath the analysis frame.
- Adjust the color map for minimum and maximum strain using the menu located underneath the LAX thumbnail grid
- The drop-down menu will offer different results

23.5.2 How to Evaluate a Single Segment

- 1. To view a specific segment in the 4D viewer check the box for *Highlight Segment in 4D Visualization*
- 2. Double-click a segment in the polar map and view the strain of the selected segment in 4D by clicking the film icon
- 3. The respective segment in the AHA segment will be highlighted automatically



23.6 Diagrams for Strain, Displacement and Torsion 23.6.1 How to Display Strain and Displacement Diagrams


1. Start with selecting the region for which you would like to display the parameter:

• ROI on current slice

• The number of ROIs can be in-/decreased (minimum is 6, maximum 24) using the menulocated underneath analysis viewer

2. Use the up/down arrows next to ROI on current slice to highlight the respective ROI

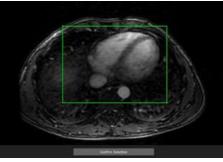
Torsion:

- If not defined, the software uses the most basal and apical slice to calculate torsion
- To select different slices for the torsion calculation: Right-click on the slice number in the thumbnail grid and select B/A

24 Flow | 4D

24.2	Data Cropping
24.3	Preprocessing
	24.3.2 How to Preview 4D Flow
	24.3.3How to Do an Offset Correction and Phase Aliasing
24.4	Segmentation
	24.4.2How to Segment a Vessel
	24.4.3How to Extract a Centerline
24.5	Analysis
	24.5.2How to Visualize Flow in 4D
	24.5.3How to Do a Flow Measurements
	24.5.4Ventricular Flow Analysis
	24.5.5How to Do a Shunt Calculation Qp/Qs
24.6	Advanced 4D Flow Parameter Analysis
	24.6.2 How to Assess Wall Shear Stress
	24.6.3 How to Do Relative Pressure Mapping
	24.6.4 How to Calculate Pulse Wave Velocity
	24.6.5 How to Analyze Energy Loss

Intended Use:


Preprocessing.

24.1 Data Cropping

- 1. Load the 4D flow study from the thumbnail pane into the module via double-click or drag-and-drop
- The cropping tool can be used to better define the field of interest and improve performance for big studies (acquisitions with more than 3000 slices)

Note: Once the bounding box is fixed, all the further analysis will be done within the bounding box. If the bounding box is deleted or modified before saving workspace, allthe measurements will be changed.

- 2. Select the box by clicking the green line
- 3. Grab the green dots at the left top and right bottom corner of the box and drag toconfine the region of interest

- 4. Use the "Erase Mask" tool to manually exclude regions that should not be part of the static tissue mask, e.g. spatial aliasing or regions of high flow inside ofthe green bounding box. The static tissue mask is not restricted to the bounding box.
- 5. part of the static tissue mask, e.g. spatial aliasing or regions of high flow inside of the green bounding box.

- 6. A checkbox in the ROI selection page allows the user to adjust the 4D analysis, more specifically the PcMRA segmentation, to small sized vessels. If unchecked, the analysis is optimized for (big) cardiovascular vessels. The option is saved to theworkspace. Reset workspace will not change the checked status of the checkbox.
- 7. Confirm Selection
- 8. To change the selection, go to *Workspace*>*Reset Workspace*

24.2 Preprocessing

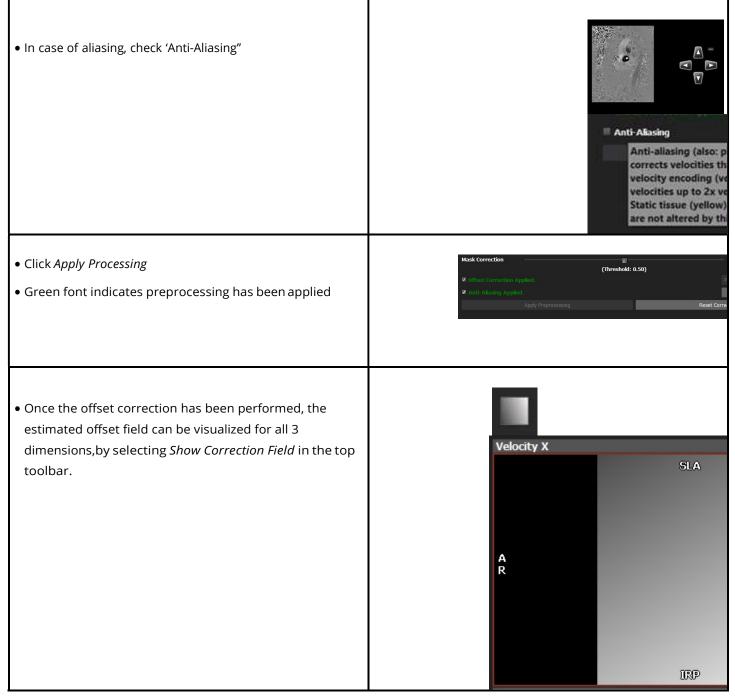
When a user loads a study into the Preprocessing Page, the static tissue and vessel mask will be automatically identified, but the OffsetCorrection (OC) won't be automatically applied. The user can use the suggested mask for OC or adjust it with the slider. The

static tissue mask shall be distributed evenly across the images. The used/selected threshold value of the preprocessing slider for the offset correction is displayed next to the slider.

1. Run the cine and scroll through the slices. The left central

Viewport displays the time averaged MRA. The right MPR Viewer

allows for navigation in any plane and direction with


synchronized magnitude and velocity views (see MPR Viewer)

2. Adjust the color bar: LMB click on the bar will open a dialog.

Note: Structures on preview page are independent from the structures on the segmentation page.

24.2.1 How to apply an Offset Correction (OC) and Phase Anti Aliasing

 The software automatically defines a static tissue mask. The user can use the suggested mask for OC or adjust itwith the Mask Correction slider. 	Mask Correction (Threshold: 0.50) Offset Correction
 Make sure that there are no unwanted regions included in the mask. Having flow or noise included in the static tissue can have a severely negative influence on the result. The static Tissue mask will be used for Offset Correction. 	The static tissue mask (yellow) is an important parameter of the velocity offset correction. M that static tissue voxels are distributed evenly the whole image. Do not include voxels repre- vessels, noise (air) or spatial aliasing. A polynomial surface is fitted to the velocities tissue voxels and then subtracted from the wh image. This is based on the assumption that th flow in static tissue.
• Click on <i>Mask Overlay</i> to activate and deactivate the static-tissue (yellow) and air- filled (blue) mask overlays.	

24.3 Segmentation

Intended use:

- Segmentation
- Centerline extraction

24.3.1 How to Segment a Vessel

 Show Magnitude Image toggles between magnitude and phase-contrast display. The magnitude allows you to run a cine in the background. 	Show Magnitude Image
2. Activate the <i>Display Mask Overlay</i> button.	
3. Use the <i>Mask Threshold</i> slider to adjust the segmentation.	Mask Threshold

4. Use cut and crop to refine the MRA segmentation in the PC MRA	, I Crop ≫ Cut	
 Define one or several masks with, or without creating a centerline Right-click to add a new or delete structure Double-click on a title to rename Right-click on the existing vessels to delete 	PA New Aorta	Aorta Delete PA New

24.3.2 How to Extract a Centerline

1. Click Trace Centerline	2 Trace Vessel Centerline
 Set a start and an endpoint in the PC image Select if you are about to trace a small or large vessel (coronaries are small, everything larger is classified as large). Adjust the control points in any view port Rotate around the centerline with a left mouse drag next to the line in the CPR view. Note: Only the spline and control points within the slab 	
 range is visible. 6. Once you have created several masks and/or centerlines youcan easily switch back and forth between the vessels by simply clicking on the vessel title 	Aorta PA
7. Use the <i>Vessel Diameter</i> slider to grow the mask from the centerline	Vessel Diameter

24.4 Analysis

Intended Use

- Flow visualizations
- Quantitative Flow analysis

24.4.1 How to Visualize Flow in 4D

1. Select a flow visualization from the top tool bar	() # 16 ~6 ⊗
2. Start the cine and adjust the frame rate	D 3/14 20 fps
• Velocity Visualization	

• <i>Vector Visualization:</i> Displays speed and direction. Change the density of the vectors between 1-20 lines/ml	
 Pathline (Planes) Visualization: Evolution of 3D blood flowover one or more heartbeats. Note: User needs to check accuracy of contours before observing the particle tracing. Pathline density can be adjusted via slider heartbeats. Requires a centerline. Pathline of a specific phase: By default, pathlines are emitted continuously. Use the slider on the bottom of the page to scroll through the phases to identify the onset of e.g. a jet. 	
 Pathline color: Illustrate complex flow dynamics incongenital heart disease. Note: Single color map mode does not indicate velocities. 1. Click on the flow plane and select <i>Set Pathline Color</i> from the context menu 2. To save and add a second plane, click <i>AddMeasurement</i> 3. Position the free plane and set a color 4. Again, save the plane by clicking <i>Add Measurement</i> 5. Run cine to visualize the custom color-coded flow 	eresting of the second se
• Pathline (Mask) Visualization : Display pathlines of particles emitted from all areas within the segmented mask. Select phase and density of the pathlines	~5
• <i>Streamline Visualization</i> : 3D velocity fields at a specific temporal phase. Change the density of the streamlines.	

24.4.2 How to do a Flow Measurement

	1
1. Select a vessel from the list	 Main PA Aorta
 2. Place a plane in your ROI. Planes will follow a center- line, if present. (toggle on/off the centerline display with short- cut key 'T') Note: The flow direction of the plane is indicated by an arrow. The direction can be changed via context menu > 	Plow D/Silved)
Invert.	
 Magnitude and Velocity images will be displayed next to the MRA. Maximize the view: Space-bar-click on a view-port 	
 Optionally, activate a color-coded flow overlayto the cross-sectional images <i>Velocity</i> and <i>Vectors</i> can be displayed color-coded incross-sectional views 	
• A contour will be drawn and propagated automatically,and a flow curve will be displayed instantaneously	Flow Tree (rein)
 A checkbox allows to deactivate automatic contourdetection in both Analysis and Ventricular pages. 	✓ Auto Contouring
 If auto contouring is disabled, the user has to draw the contour manually and it will only be smoothed to removesharp edges but not made circular as before. 	
• The user can round the contour with ctrl + L. If auto contouring is on, it will behave as before. In both casesthe contour will propagated to other phase images automatically	
3. Adjust the double oblique views to accurately displaycross-sectional images	Dediv Dispat

 Run a cine to check for correct edge detection Single-click the contour to adjust it. Note: The modifiedcontour is only forwarded to the end of the cycle. 	
• Different contouring modes, such as <i>Point-Click</i> or <i>Thresholding</i> will be available by dragging the mouse on the top position tag	ASL
 Add a measurement triggers the flow calculation: Net,peak and regurgitant flow will be calculated automatically. As soon as there are more than 2 planes, pulse wavevelocity will be calculated. Note: Regurgitation fraction can only be calculated if thedataset covers the full cardiac cycle 	Net Flow Peak Vel. Regur. Measurement (ml/cycle) (cm/s) 60 Flow 1 98.98 120.00 2.50 Aorta Ascendens[Qs] 116.12 131.00 5.59 Flow 3 62.03 116.00 14.77 Aort Decendens \$59.24 103.00 15.57 Flow 6 49.04 109.00 8.66
• To label a contour right-click on the plane in the PC MRA, or right-click on the flow measurement in the report, select <i>Rename</i> from the menu	Rename Hide Delete Measurement Set Pulmonary Flow Set System Flow

24.4.3 Ventricular Flow Analysis

In order to calculate the LV functional flow components (Direct Flow, Delayed Ejection, Retained Inflow, Residual Volume (%)) the AV and the MV contours must be defined on each phase of the 4D Flow series. This can be done manually or semi-automatically. For semi- automatic analysis, the LAX cine SFFP series from the study can be used as reference for AV and MV tracking. Therefore:

- 1. Start by checking the alignment of the LAX series and the 4D Flow volume, by loading the LAX cine into the 4D Visualization frame. If there is significant misalignment, the LAX series should not be used for the tracking of the valves.
- 2. Drag a LAX cine SFFP series in the LAX reference frame, preferably a 3CV to track both the AV and the MV.
- 3. Click on the AiAV/MV line detection tool, check the valve lines on each phase of the LAX series and correct if necessary. It is also possible to draw the AV/MV lines manually and label them as "AV" and "MV", at least on ED and ES phases. The valve locations will beinterpolated in such cases. However, adding correct valve locations on more phases will provide higher accuracy of the valve tracking. The contour forwarding action may also be used from the context menu.
- 4. Click on the Valve Tracking tool. This will use the LAX contours information to find the dynamic AV and MV planes position in the 4D PCMRA.
- Check and correct the AV/MV contours on each phase of the 4D Flow series. Select and right-mouse click (RMC) on the plane on the 4D Visualization. Selecting the Double-Oblique View, helps to check and correct the respective valve plane on each phase. The Flow Visualization can be used for better identification of the valves' planes.
- 6. Define the Isovolumetric Relaxation Phase (IVR).
- 7. Run the Ventricular Flow Analysis.

8. The onscreen report will return the LV Functional Flow Components, and these can also be visualized on the 4D PCMRA. The AV/MVNet Flow, Peak Velocity and Regurgitation Fraction will also be reported.

NOTE: Other LAX series, e.g. 2CV, can be loaded in the reference frame to track the valves.If a 2CV is loaded after a 3CV, and steps 3) and 4) are repeated, the software will "retrack" the MV from the 2CV and will keep the AV information from the 3CV.

User Manual Version 5.13

24.4.4 How to do a Shunt Calculation Qp/Qs

Other than in 2D Flow, planes must be set in the same structure.

- 1. Segment the vessels (no centerline) and move to the analysis page
- 2. Place a plane in the aorta and in the pulmonary artery
- 3. Scroll through the phases and correct contours if necessary

4. Open the context menu by clicking on the respective plane, e.g. in theascending Aorta and select *Set Systemic Flow*

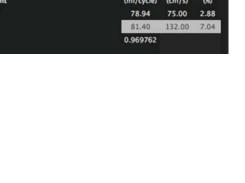
- 5. Add measurement
- 6. Place a second plane in the Pulmonary artery and select Set Pulmonary Flow
- 7. Add measurement

24.5 Advanced 4D Flow Parameter Analysis

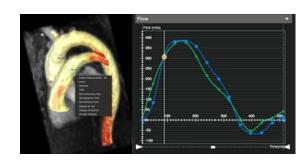
Note: A separate advanced license needs to be installed in order to use the ventricular flow analysis.

24.5.1 How to Assess Wall Shear Stress

cvi42 automatically calculates axial and circumferential wall shear stress as soon as a plane isset, and a contour is defined (*Flow* menu).

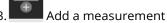

run thecine

To visualize 3D wall shear stress, activate the button in the top tool bar and


2. The stress curve will be updated as you drag the plane along the centerline

4. WSS components will be calculated automatically and the curves and their respective measurements can be selected from the *Flow* Menu

Flow 7[Qp]

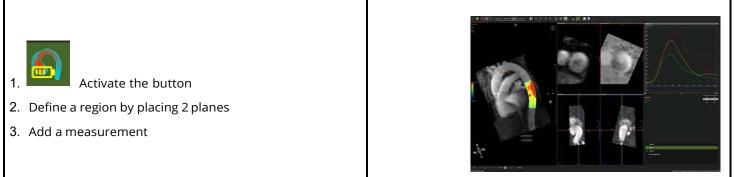

Qp/Qs

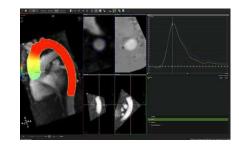
24.5.2 How to do Relative Pressure Mapping

The software will compute a relative pressure field, giving the pressure difference betweenany two points. This will be translated into a colored pressure map.

Activate the Pressure Visualization button

2. You will be given a reference and a free plane. Position them in your ROI.


4. Pressure curves from the measurement and the free plane will be displayed in a graph. The relative pressure difference to their reference plane will be reported


24.5.3 How to Calculate Pulse Wave Velocity

- 1. Pulse wave velocity (PWV) is a biomarker directly related to vessel stiffness that has the potential to provide information on early atherosclerotic disease burden
- 2. Pulse wave velocity calculation requires a centerline for the vessel structure with at least two flow measurement planes
- 3. Once two measurements have been provided (The limit is 12 planes) the system automatically calculates and reports PWV

Note: Not for clinical use.

	Max Pressure Avg Pr	essure
Measurement	(mmHg) (mn	1Hg)
RPM 2	26.47 8.	95

 Hovering over the plane will display the color overlay Label the region by either right-clicking on the variable in the report or the plane. Choose a description from the menu if present 	
6. Maximum and average energy loss over time will be reported and the curves per region (limited to 6) are displayed	Max Energy Loss Avg Energy Loss Region Name (mW) (mW) 0.59 0.36 0.2 0.40 0.20 CL 3 0.58 0.26

25 Coronary Module

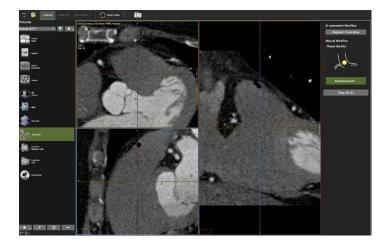
25.2	Landmark Page
	25.2.2 Automated Workflow
	25.2.3 Manual Workflow
25.3	Centerline Page
	25.3.2 How to Define a Centerline via Region Growing
	25.3.3 Define a Centerline via Seed Points
	25.3.4 Edit the Centerline
	25.3.5 Save Options
	25.3.6 3D View
25.4	Cross Section
	25.4.2 How to Do a Stenosis Assessment
	25.4.3 How to Use the Centerline Graph

The Coronary Module includes the following pages:

- Landmark: aids the coronary segmentation
- Centerline: Create a centerline for CPR
- Cross Section: Evaluation

25.1 Landmark Page

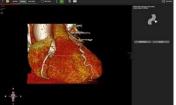
The Landmark Page allows the user to either use an automated workflow to segment and label the major coronary arteries, or a manual workflow to identify various vessel centerlines, starting with identifying the aorta.


25.1.1 Automated Workflow

• To segment and label the three major coronary arteries, press "Segment Coronaries". Additional arteries or branches can be segmented on the centerline page using the seed point method described below

25.1.2 Manual Workflow

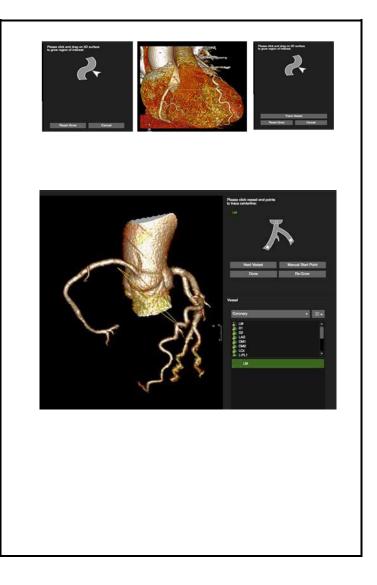
• Placing a Landmark in the ascending aorta will support the centerline generation.



25.2 Centerline Page

- Create a centerline via 3D-Region-Growing orsetting seed points (start and end points)
- Using the landmark point, the system willautomatically segment the heart
- The thresholding page will be the default, if you prefer to create a centerline by setting seed points, exit the page by clicking 3D-Region-

Growing in the tool bar



25.2.1 How to Define a Centerline via Region Growing

The Grow Region Interface provides a guide diagram to indicate the next user action.

- The *Region Growing* tool is activated by default.
 Define a single vessel or the entire coronary tree.
- 2. Drag on the 3D surface to define a vessel or a vessel tree
- 3. The modifier key 'alt' will rotate, Ctrl/ (command forMac) will pan the volume
- 4. Click Trace Vessel when you are done
- 5. Reset Grow if you are not satisfied
- 6. Using the landmark, the system will automatically place a start point
- 7. To relocate the start point click Manual Start Point
- The software has a predefined list of coronaries and will automatically move to the next vessel in the list after setting an end-point
- 9. Move to the next list item by clicking Next Vessel.
- 10. To relabel a centerline capture, drag the appropriate label on the capture with the green dot
- 11. Add/Delete a new label with a right mouse click in the background

25.2.2 Define a Centerline via Seed Points

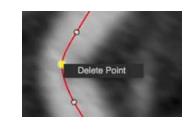
25.2.3 Edit the Centerline

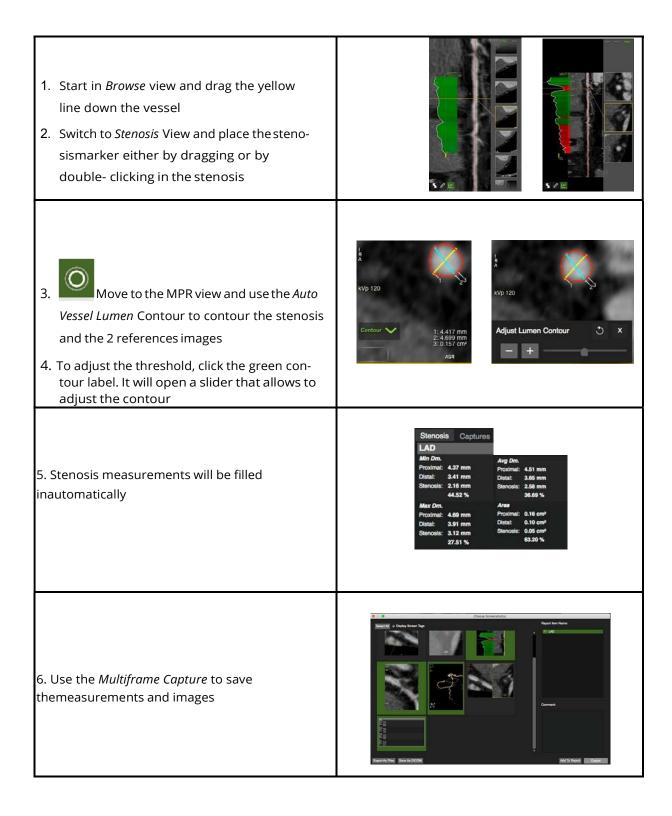
- Shift, add (single left-click), delete (right-click) controlpoints in the CPR or the oblique views
- 2. Rotate around the centerline with a left mouse drag close to the centerline
- 3. Pan the image by moving the cursor away from thecenterline until the hand symbol appears

25.2.4 Save Options

• Save rotational images

0

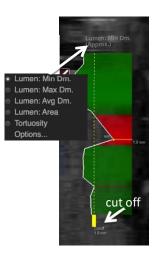

25.2.5 3D View


1. Select Calcium or Volume Rendering	
 Segment Vessel: check it will segment vessels with all centerlines Display/hide centerline Display/hide background 	

25.3 Cross Section

The page is designed to visually and quantitatively assess the vessels with existing centerlines.

25.3.1 How to do a Stenosis Assessment



25.3.2 How to Use the Centerline Graph

Centerline Graph displays min./max./average lumen diameter, lumen area and tortuosity. It will automatically detect the minimumand maximum point along the centerline graphs.

Options:

- Lumen menu, offering display options
- Cut off: Drag the yellow handle to set a cut off
- The ruler measures a custom defined distance
- The context menu offers viewing, rendering, saving, export andmore options

26 Calcium Scoring

26.2 Toolbar

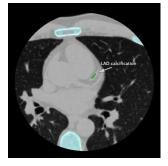
26.2.2 How to Do Calcium Scoring

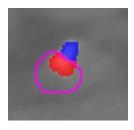
Calcium Scoring is a method to quantify the plaque load of the coronary arteries. Post processing for Calcium Scoring requires the detection of calcium and assignment to a coronary.

26.1 Toolbar

- The toolbar provides 4 buttons to identify Calcium in the different coronary arteries
- Ca Mass calibration factor: Using a phantom with calcium inserts of known mass allows for determination of a calibration factorfor different MDCT scan protocols

26.1.1 How to do Calcium Scoring


1. Open the on-screen navigation buttons or use your keyboard arrow keys to scroll through the slices



- Toggle the Overlay Display and scroll through the volume
- 3. When you have detected Ca, select the respective coronary ROI-button and simply click in the calcified area
- 4. To re-do the region selection, click again
- 5. To reset all region selections, use the *Reset Selection* button in the toolbar

- 🏏 To assign calcification to two different coronaries:
- 7. Split the lesion with the Ca Scoring Selection Contour
- 8. Select the first matching ROI (e.g. LM) and click into the respective section
- 9. Then, select the second ROI (e.g. LAD) and click into the other part of the lesion

Threshold

• Set the Threshold (default 130) (on the bottom of the reporting panel, underneath the Percentiles)

Calibration Factor

- The Calibration Factor will be retrieved from the DICOM header or can be entered
- manually(Calibration Factors are specific to scanner, protocol and patient weight)

Agatston Classification

• Volume, Mass and Agatston Score and Agatston Classification determined automatically

Percentiles

• To determine the Percentiles of the patients Agaston Score per coronary, select the ethnic group

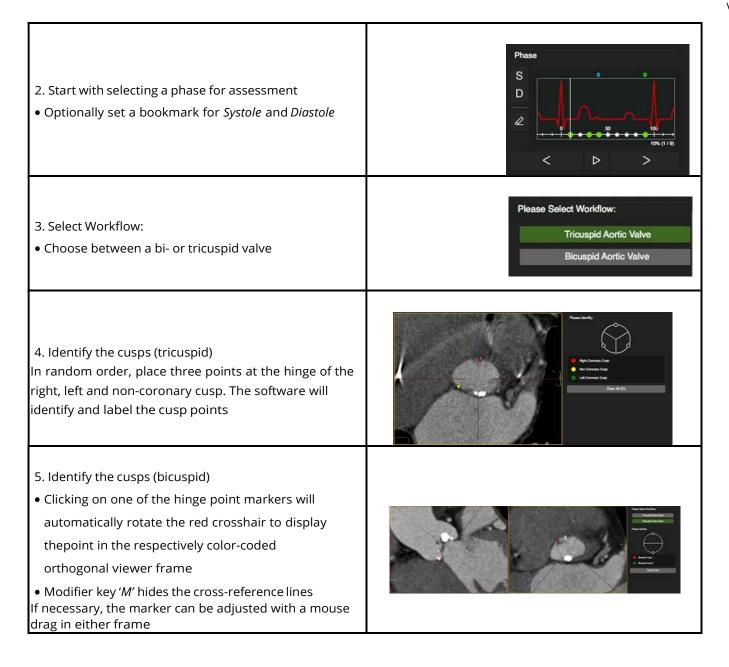
Ca Scoring	g Report			
Artery	Volume mm ³	Mass mg	Score Agatston	
	0.00	0.00	0.00	
	75.44	27.55	100.59	
	0.00	0.00	0.00	
	54.44	19.51	72.59	
Total	129.88	47.06	173.18	
Ca Threshold	130.00			
Ca Mass Calib	ration Factor:	1.00		
Agatston Score Classification:				
Moderate Coronary Artery Calcification				

Agassian Scale	
- 1600	
1400	
1200	
1000	
800	
600	
400	
200	n F

User Manual Version 5.13

27 Aortic Valve Module

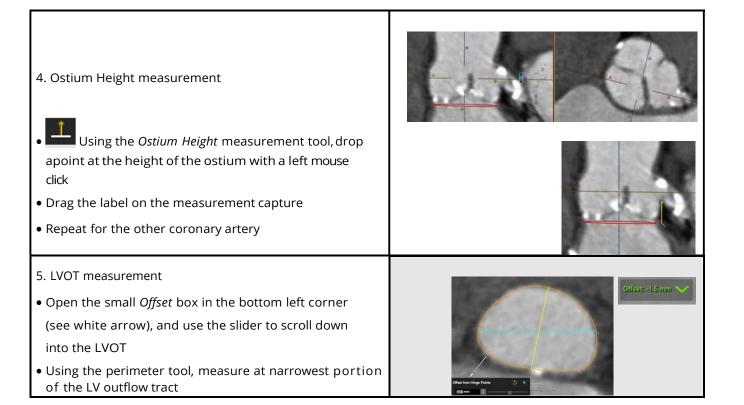
27.2 Landmark page
27.3 Annulus Page
27.3.2 Measurements
27.3.3 Reporting options
27.3.3.1 Capture Measurements and Images
27.3.3.2 Standard Report
27.4 Aorta Fluoro Page
27.5 Calcium Page
27.5.2 Control Feature
27.5.3 How to Detect Calcium
27.6 Valve in Valve
27.7 Apical Page


Intended Use

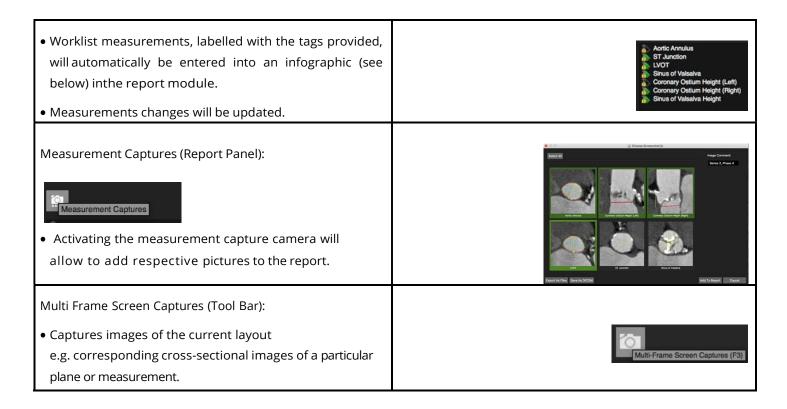
cvi42 – The Aortic Valve module offers a structured workflow for pre-procedural planning of trans catheter aortic valve replacement.

27.1 Landmark page

Landmarks will define the annulus plane. If measurements already exist, the module will skip the landmark page and will open the Annulus page.



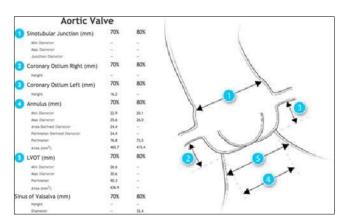
27.2 Annulus Page

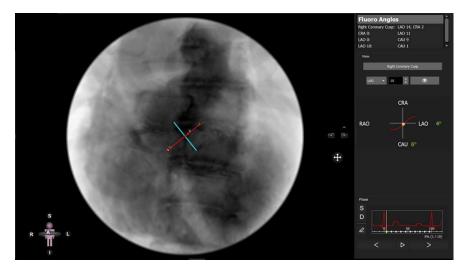

27.2.1 Measurements

Aortic Annulus

 Use the <i>Perimeter</i> tool and set control points around the annulus. You can maximize the view with a spacebar-click, or by clicking in the top right corner of theview port To edit the perimeter, single-click on the control points.Single-click in the background to disengage The annulus will be the only measurement that is la-belled automatically 	
Ancillary measurements: 'Reset View' button in the toolbar will take you back to the annulus plane	Reset Views
• Tools are in the top tool bar and the pencil box in the left bottom corner of the viewer frame. Measurements can be done in any viewer frame	$\bigcirc \leftrightarrow \checkmark \uparrow \checkmark$
 Measurements and images are captured automatically Drag the appropriate label from the predefined list on thecapture To review a measurement, simply click on the capture Right-click to delete the capture. Alternatively, use the delete key 	Addis Admaile Addis Admaile Bornery Column Hangi (Fund Connery Column Hangi (Fund Column Hangi (Fund Colu

27.2.2 Reporting Options 27.2.2.1 Capture Measurements and Images

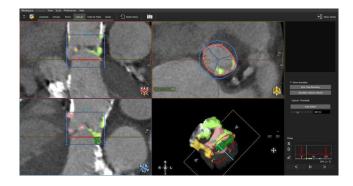



27.2.2.2 Standard Report

Upon opening the default report module:

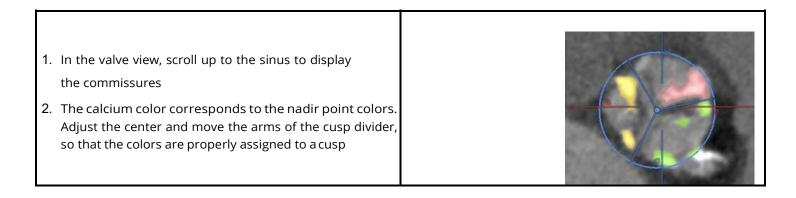
• Review the infographic and related measurements

27.3 Aorta Fluoro Page


Each point on the "s-curve" will return an angio angle perpendicular to the aortic valve plane.

These angles can be used as suggested orientation for C-arm during the intervention, due to the fact that the conditions during the CT scan are not identical to those during the procedure, angles may vary.

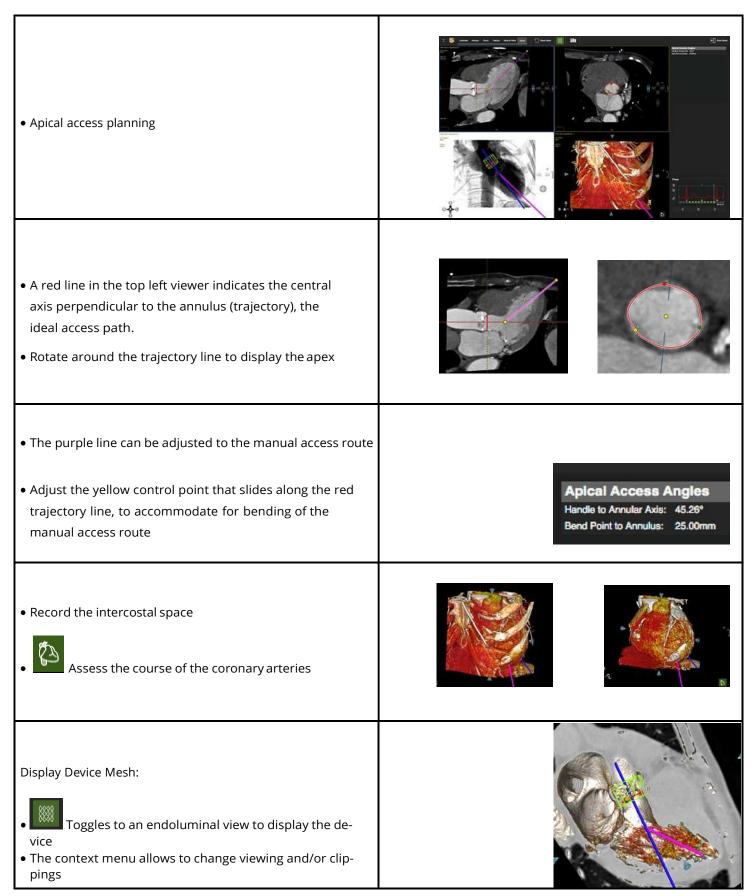
27.4 Calcium Page


- 3 MPR and a 3D Viewer
- Auto detect or manually adjust the calcium threshold
- Cusp specific color-coded calcium overlay
- Calcium volume report per cusp, in aorta and LVOT

27.4.1 Control Feature

- 1. Mouse drag in the long axis will rotate around the valve center
- 2. Mouse drag in the short axis will scroll up/down the Aorta/LVOT
- 3. Press the Ctrl (command in Mac) key to pan the image in the view port

27.4.2 How to Detect Calcium

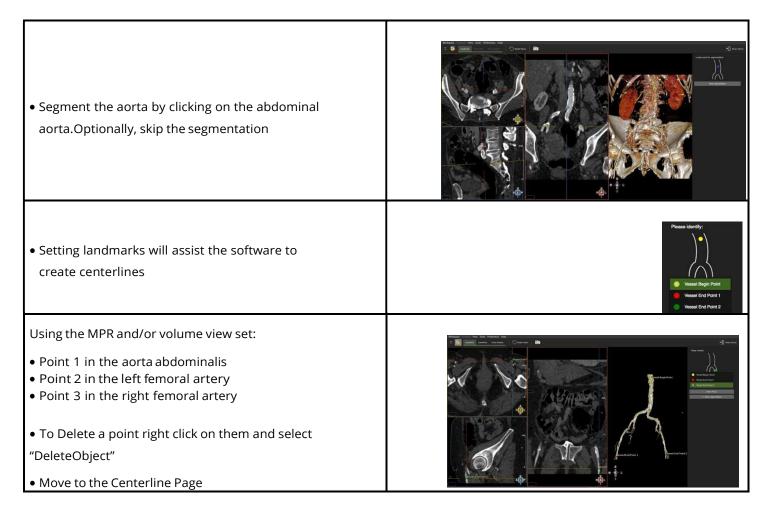

User Manual Version 5.13

 Drag horizontal lines to increase or decrease height Drag control points to increase or decrease width 	
5. Use the fine tune option to include or exclude certain structures, e.g. to exclude the coronaries. Once the fine tuneoption is enabled drag the control points in the short and long axis views	Fine Tune Boundary
 6. Using the <i>Auto Detect</i> button, the software will automatically place a sample area (blue square) above theannulus in the log axis view. From that sample, a threshold will be determined to auto detect calcium. (According to the formula: average HU + 4.0 *standard deviation) 7. Alternatively, drag the slider to manually change the threshold for HU 	Calcium Threshold: Auto Dotect 485 HU
 8. In the report pane click <i>Calculate Calcium Volume</i> fora calcium report 9. Click on the camera to add the Calcium Volume and images to your report 	Calcium Volume Aortic Valve Ragion Calcium: 1213.5 mm³ - Left Coronary Cusp: 305.8 mm³ - Right Coronary Cusp: 387.0 mm³ - Non-Coronary Cusp: 520.7 mm³ Upper LVOT Calcium: 44.0 mm³ - Below Left Coronary Cusp: 28.8 mm³ - Below Right Coronary Cusp: 0.0 mm³ - Below Non-Coronary Cusp: 15.2 mm³

27.5 Valve in Valve

 Device simulation Additional measurements 	
For device simulation choose between: Image: Ward of the system Image: Display Device intersection Image: Display Device Mesh	
 In the report pane choose Circular shape and use the options provided to position the device. Lock device position across different phases. 	Device Simulation Shape: Circular Diameter: 26.0 mm Offset from Annulus: -3.0 mm Offset from Annulus: -3.0 mm Move Horizonally: 0.0 mm Move Vertically: 0.0 mm Spin around Annulus: 16.0 mm Tilt: 0.0 0 Flip: 0.0 0 Circular Diameter: Diameter: 2.0 mm 2.0
Custom Shape: • Allows to import vendor specific image files • Change units from metric to imperial	Device Simulation Shape: Custom File: +/- Unit: Millimeters +/- Offset from Annulus: -3.0 mm + Move Horizonally: 0.0 mm + Move Verticolly: 0.0 mm + Spin around Annulus: 0.0 + File: 0.0 + File: 0.0 + File: 0.0 + Default

27.6 Apical Page



28 Femoral Module

28.2	Landmark Page
28.3	Centerline Page
	28.3.2 Edit the Centerline
	28.3.3 Assessment of the Puncture Site
28.4	Cross Section
	28.4.2 Reporting

The Femoral Module allows to assess the access for cardiac interventions.

28.1 Landmark Page

28.2 Centerline Page

- Edit centerline control points
- Assess the calcium load

Based on the landmarks a centerline is generated automatically.

- 'T' toggles the centerline on/off
- Select the vessel simply by clicking on the vessel of interest in the reference viewer
- Make sure the centerline is not crossing calcium.

The software will dynamically calculate a calcium threshold for automatic vessel lumen assessment based on the centerline points

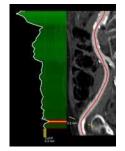
28.2.1 Edit the Centerline

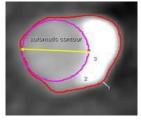
- Use the up/down arrow keys on the keyboard to navigate along the control points
- Add control points with a double-click on the centerline
- Delete a control point with a right mouse click on the point
- Rotate around the centerline with a left mouse drag close to the centerline
- Pan the image by moving the cursor away from the centerline until the hand symbol appears

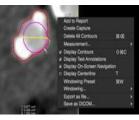
28.2.2 Assessment of the Puncture Site

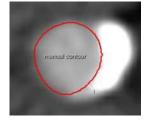
Use the *3D View* menu in the right-hand panel to:

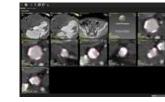
- Hide the centerline
- Segment the vessels
- Add a background to visualize the femur heads
- Assess Calcium by switching to a Calcium View
- Enlarge the view by clicking the space bar key




28.3 Cross Section


- 1. Display the centerlines in the reference viewer
- 2. Select a vessel by clicking on the centerline in the reference image
- Open the centerline graph. The graph is based on the diameter of the best fitting circle inside the lumen, excluding calcium. The calcium threshold is calculated dynamically based on centerline points. Therefore, during centerline generation, attention should be paidthat the centerline is not crossing any calcium
- Drag the yellow cursor line along the vessel. The diameter is displayed continuously on the right side of the cursor line
- Measurements will be done automatically as soon as thecenterline graph is activated, and you halt the cursor line
- A contour can be drawn manually. In that case, the assumption is made that the contour is drawing excluding calcium and no circle will be fitted
- 7. Take captures via context menu
- 8. Use the predefined tags to label them
- Click on the captures to review axial and orthogonalviews
- 10. Captures will be displayed as cross-sectional imagesright of the CPR

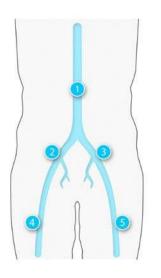



28.3.1 Reporting

Click the camera button in the reporting pane to:

- Add images to the report
- Export them in different formats
- Save the in DICOM format

Measurements labeled as described in the previous step willend up automatically in the infographic of the report.

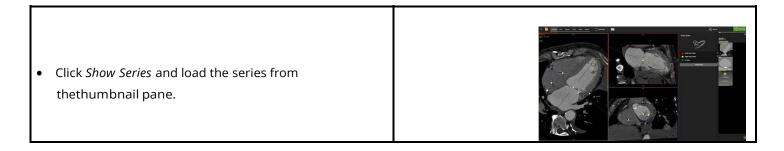


Ipng bmp tico

*.jpeg *.jpg *.ppm *.tif *.tiff

*.xbm *.xpm

29 Mitral Valve Module

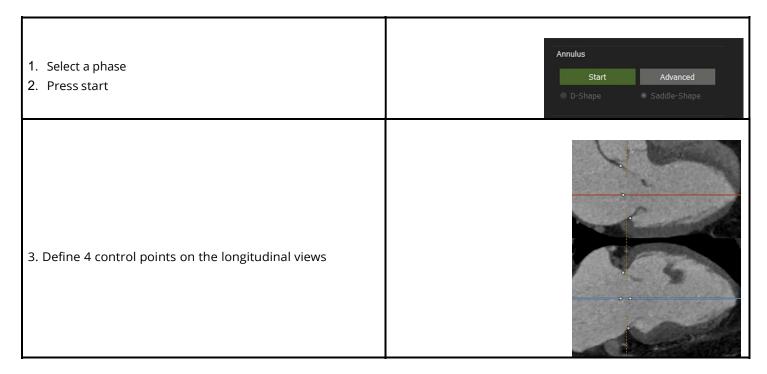

- 29.2 Landmark page
- 29.3 Annulus Page
 - 29.3.2 How to Define the Mitral Annulus (MA) Plane
 - 29.3.3 Mitral Annular Calcification (MAC) Assessment
 - 29.3.4 How to Define the Mitral Annulus (MA) Plane Advanced
 - 29.3.5 Guide Wire Simulation
- 29.4 Calcium Page
 - 29.4.2 Control Feature
 - 29.4.3 Three Chamber View
 - 29.4.4 Quantify the Calcium Load
- 29.5 LVOT Page
 - 29.5.2 LVOT Assessment
 - 29.5.3 Device Simulation
- 29.6 Fluoroscopy Page 29.6.2 Optimal Viewing Curve
- 29.7 Apical Page

Intended Use

The *Mitral Valve* module offers a structured workflow for pre-procedural planning of transcatheter mitral valve replacement (TMVR).

29.1 Landmark Page

Set landmark for the assisted generation mitral valve plane

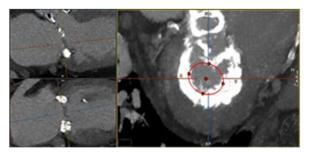

• If the software detects contours or measurements, themodule will open in the <i>Annulus</i> page. Phases with measurements can be identified by the green dots.	Phase S D & C C C C C C C C C C C C C C C C C C
 The Aortic Root center will be detected automatically. Slice through the images by dragging the mouse in the axialimage, to display the mitral valve center. Click to set the second landmark. The LV Apex will be placed automatically. Use the crosshairs and swing around the apex to check for correct positioning. Simply drag the points to reposition. 	

29.2 Annulus Page

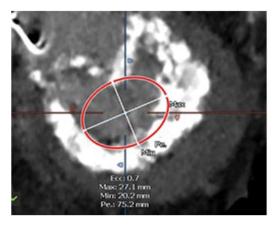
Definition and automated measurement of the valve plane for saddle and D-shaped annulus.

Note: When needed adjust the mitral valve center point and apex point.

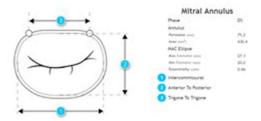
29.2.1 How to Define the Mitral Annulus (MA) Plane

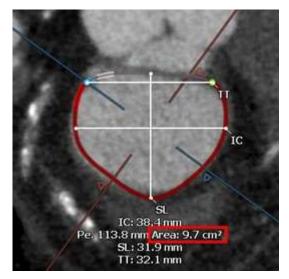


29.2.2 Mitral Annular Calcification (MAC) Assessment


- Mitral annular calcification assessment.
 - To asses a calcified Mitral Annuls, press the MAC button.

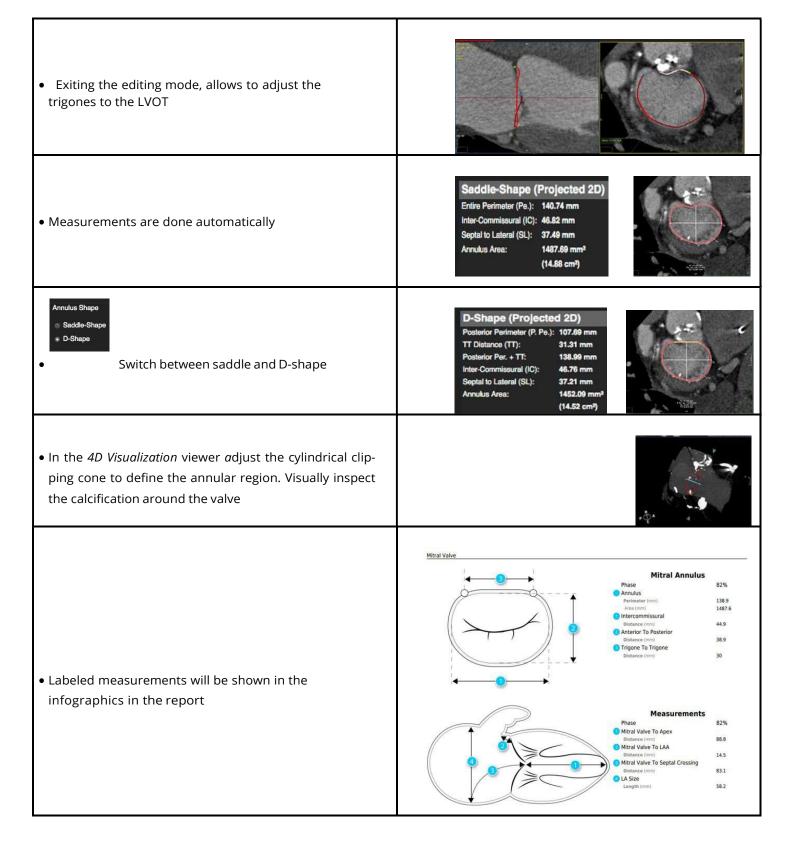
Annulus	
Start	Advanced
MAC	
D-Shape	Saddle-Shape
_	15 mm
Coronary Sinus	
Start	🗹 Display


- The long axis views will be set to MPR mode, the short axis will be set to a slabbed MIP.
- \circ $\;$ $\;$ Place the short axis in the center of the calcified mitral valve.
- Adjust the ellipse annotation in the short axis view by dragging the control points to their desired locations.

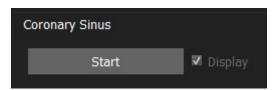

- Click outside the ellipse, to finalize the measurement.
- Min/max diameter, perimeter and eccentricity will be reported on screen.

• The report will be updated accordingly.

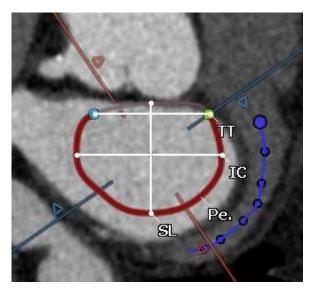
• Annulus area is now shown in the User interface.


29.2.3 How to Define the Mitral Annulus (MA) Plane – Advanced

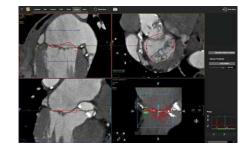
 Select a phase Start the workflow Press "advanced" 	Annulus Start Advanced O D-Shape Saddle-Shape
 4. Define control points: The annular contour will be segmented within the 3D space byplacing 16 seeding points at the insertion of the valve leaflet After each click, the software automatically rotates around thered trajectory line by 22.5° The short axis view is synchronized, displaying the plane thatintersects trajectory line and last defined control point After 16 clicks, the entire circumference of the annulus will be identified and is shown in all 4 viewports 	


Note: Both the regular and the advanced Annulus can be edited

 5. Edit the Annulus Double-click to toggle control points on/off Drag to shift points Left-click to add points Right-click to delete points To redo the annulus, restart the annulus definition by clicking the bar again 	Delete Point
--	--------------


г

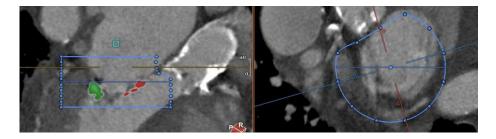
29.2.4 Guide Wire Simulation



- 1. Press **Start** to begin defining the Coronary Sinus.
- 2. Scroll through the data set in the short-axis view or rotate around the horizontal axis in the long-axis view and click to add key points along the sinus.
- 3. Double-click on the last point to finish.

29.3 Calcium Page

- Auto detect or manually adjust the calcium threshold
- Calcium will be displayed in a color-coded calcium overlay
- Calcium volume will be reported per leaflet



29.3.1 Control Feature

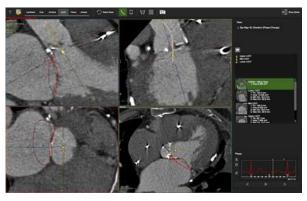
- Mouse drag in the long axis will rotate around the valve center
- Mouse drag in the short axis will scroll up/down along the trajectory line
- Press the Ctrl (command in Mac) key to pan the image in the view port

29.3.2 Three Chamber View

- The area of interest (cylinder) can be in- or decreased by dragging the blue lines up/down orleft/right in the long axis viewer (top left).
- The small square in the atrium on top of the line indicates the sample used to calculate thecalcium threshold
- Use the fine tune button to include or exclude certain areas

29.3.3 Quantify the Calcium Load

- In the report pane click *Calculate Calcium Volume* for a calcium report
- You can customize the calcium threshold. Click calculate Calcium Volume again



Calculate Calcium Volume Calcium Threshold: Auto Detect 474 HU

• Click on the camera to add the calcium Volume and images to your report.

29.4 LVOT Page

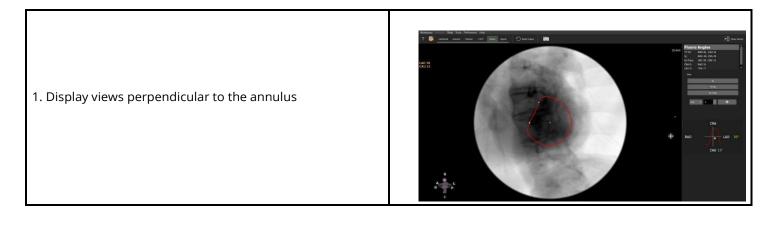
- Assessment of the LVOT
- Device simulation
- Planimetric measurement of LVOT and neo-LVOT

29.4.1 LVOT Assessment

 Activate the Centerline Control Points Place points in the Aorta and the LVOT 	
3. De-activate the centerline points and use the green bar to scroll along the centerline	
 Using the measurement tools provided in the tool box (white box in the lower left corner), measure the upper-, mid-, and lower LVOT 	
5. Use the phase diagram to inspect the LVOT in different phases. Optionally, realign the view to SL direction with every phase change	View: <u>R</u> e-Align SL Direction (Phase Change)
 6. Label the measurements by dragging thepredefined tags on the capture 7. Right-click next to the labels, to add a new label 8. For review, simply click on a capture 	Upper LVOT Upper LVOT Med LVOT Mod LVOT Mew Labol New Labol

29.4.2 Device Simulation

- Turn on the Device Mesh or Device Intersection buttons
- 2. Choose a shape from the drop-down list
- 3. Optionally import vendor specific device image files
- 4. Adjust the device position
- 5. Make additional measurements, e.g. neo-LVOT

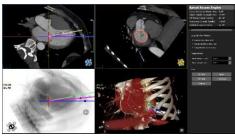


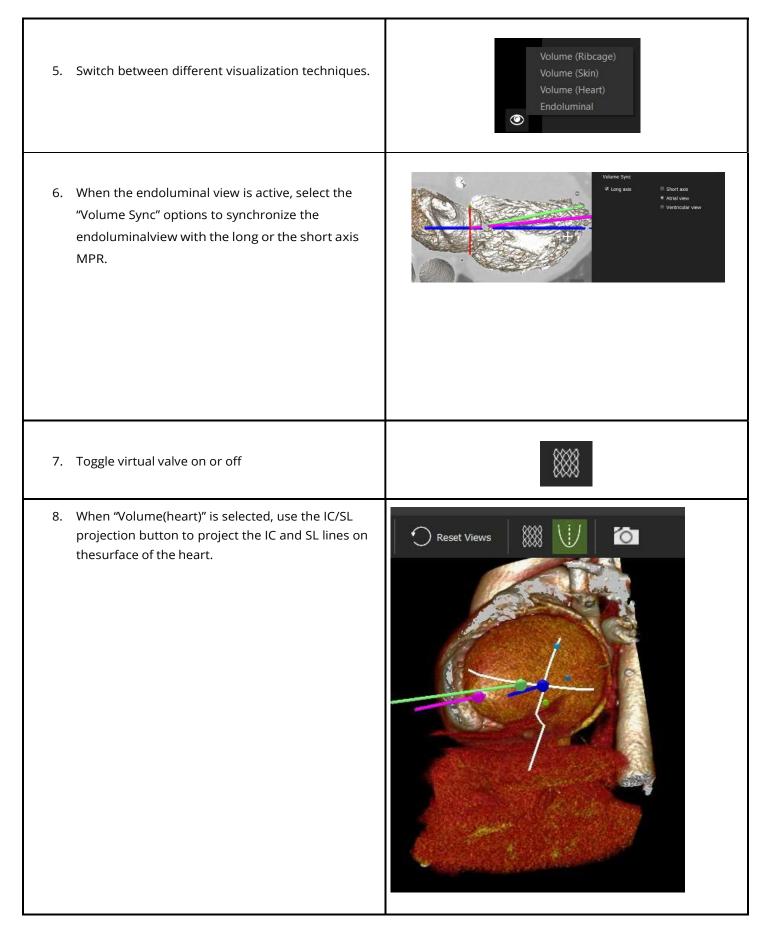
Device Sim	ulation			
	Annulus			
Shape:	Cylinder/Ellipse			
Diamete	Conical Custom			
Diameter	2:	29.0 mm	÷	
Offset fro	om Annulus:	12.0 mm		¢
Adjust al	ong IC	0.0 mm		¢
Adjust along SL		0.0 mm		¢
Height:		15.0 mm		\$
Rotate around Annular Trajectory 0.0 °			\$	
Rotate along SL 0.0 °			¢	
Rotate al	ong IC		0.0 °	¢
â	3)	1	Def	fault

29.5 Fluoroscopy Page

- Display images along the optimal viewing curve
- Capture C-arm angles

29.5.1 Optimal Viewing Curve




29.6 Apical Page

Assessment of trans apical approach to the mitral structure. Visualization of angles, catheter path, relationship to ribcage,

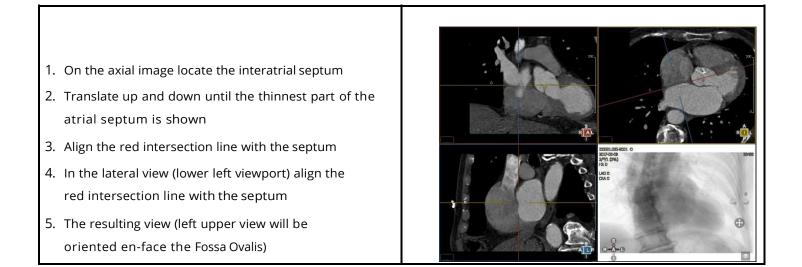
pericardial structures, papillary muscles, and mitral apparatus.

	Apical Access Angles
Displays intraprocedural catheter angles.	Manual Handle to Annular Axis: 23.56°
	Target Handle to Annular Axis: 8.61°
	Off Table (Target Handle): 34.54°
	Transverse (Target Handle): -19.31°
	Clocking (Target Handle): 19.29°
	•
	Long Axis View Rotation:
	Annulus Axis (Blue Line)
st the rotation angles:	Manual Handle (Purple Line)
 Select the rotation angles: Perpendicular axis to mitral plane (blue line) Left ventricle axis (purple line) Delivery sheath axis (green line) 	Target Handle (Green Line)
	Target Handle:
	Move along SL Line: 8.6 •
	Move along IC Line: -0.9 •
Positions delivery sheath.	View
	En-Face Apical
	Off Table Transverse
	Clocking

30 Trans-Septal Module

30.2 Contours page

30.2.2 Finding the Fossa Ovalis


30.2.3 Marking the Vena Cava Inferior and Superior and Other Structures

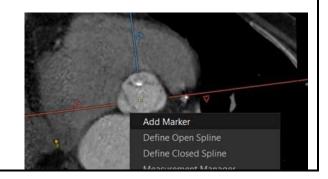
Intended Use

This module allows the user to gain a better understanding of the relationships of different parts of the anatomy and how they can appear on a fluoroscopic view during the actual trans septal interventions.

30.1 Contours Page

30.1.1 Finding the Fossa Ovalis

- 6. In the en-face view rotate the intersection lines to verify inthe orthogonal views that the center of the crosshair is in the middle of the Fossa
- Click the Fossa Ovalis button and then click on the center of the crosshair in the en-face view to mark theFossa
- 8. When needed, resize the annotation that indicates the Fossa



30.1.2 Marking the Vena Cava Inferior and Superior and Other Structures

 Reset views In the lateral viewport translate until the IVC is visible 	
 Place the crosshair on the IVC On the axial image, the IVC contour can be traced Do the same for the SVC 	
6. Use the catheter feature to draw a spline to indicate the catheter path or use the automatic option for anautomated suggestion.	***

7. Use markers to identify other anatomical markers, like theaorta

In case the Mitral annulus has been detected in the Mitralworkflow, the annotation will be transferred to the septal crossing workflow

31 Technical Support

Technical Support

For technical questions please contact our team by phone or e-mail:

North America

Circle Cardiovascular Imaging Inc.

1100, 800 5th Avenue SW Calgary,

Alberta, T2P 3T6

Canada

P: +1 403 338 1870

F: +1 403 338 1895

Europe

Circle Cardiovascular Imaging B.V.

Europe Support Phone: + 31 (800)265 8982

Report a problem:support@circlecvi.comWebsite:www.circlecvi.com